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Abstract

We introduce a computationally tractable dynamic equilibrium model of automobile mar-
kets with heterogeneous consumers who choose to keep their car or trade for a different
make, model and age. We focus on stationary flow equilibria, where outflows of cars due to
accidents and endogenous scrappage equal inflows of new cars. We introduce a fast robust
algorithm for computing equilibria and use it to estimate a model with eight household types
and four car types using nearly 39 million observations on car ownership transitions from
Denmark. The estimated model fits the data well and counterfactual simulations show that
Denmark is over the top of the Laffer curve: it could raise total tax revenue by reducing
the new car registration tax rate. We show that reducing this tax rate while raising the tax
rate on fuel increases aggregate welfare, tax revenues, and car ownership, while reducing car
ages, driving, and C'Os emissions.
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1 Introduction

Modeling the automobile market is particularly challenging due to the trading and substi-
tution possibilities that exist due to the presence of a secondary market where used cars
are traded. Not only are there dozens or even hundreds of different makes and models of
new cars to choose from in the primary market, consumers have a huge array of used car
options as well. They also decide whether to scrap or sell their car, and can respond to
an increase in new car prices by switching to the outside good (i.e. not having a car), or
holding their existing used car longer. Endogenous scrappage of cars is also of interest
for safety and environmental reasons, since it is well documented that used cars become
less safe and and pollute more as they age.’

We develop a dynamic model of trading in new and used cars that demonstrates how
secondary markets lead to significant gains from trade via clear patterns of specialization
in the holdings of cars by heterogeneous consumers. The secondary market facilitates a
“hand-me-down-chain” for cars where rich consumers buy brand new cars and hold them
a few years before selling to other slightly less rich consumers, who hold the car for a few
more years before being traded to an even poorer consumer who may hold the car until
it is involved in an accident or voluntarily scrapped.

The secondary market creates substitution possibilities that can limit market power
and affect pricing decisions by new car producers in the primary market. High government
taxation of new cars can also cause consumers to hold their used cars longer, as well as
to substitute to the “outside good”, i.e. not to own a car. Government sales taxes and
regulations on emissions and safety can also interfere with the operation of secondary
markets and reduce trade and consumer welfare. Beyond some point, sufficiently high
taxation and overly onerous safety /emissions regulations can serve to kill off the secondary
market and push consumers into the outside good. Thus there is a “Laffer curve” and
the possibility of increasing total tax revenues by decreasing tax rates.

We use our model to analyze the fiscal and welfare effect of the new car registration
tax in Denmark, one of the highest in the world, which in the sample period amounted to
180% of the new car price on top of a 25% value added tax (VAT). The Danish government

is highly reliant on this tax, which accounts for approximately 4% of all tax revenues

!See, for example, Borken-Kleefeld and Chen (2015) and NHTSA (2013). The evidence is less clear on whether
a car’s fuel efficiency (measured as kilometers per liter) declines with age.



or about 2% of Danish GDP. Our model predicts that the Danish tax rate is “over the
top of the Laffer curve” and that Denmark could raise more tax revenue by reducing
the registration tax rate. We show that reducing new car taxes and raising fuel taxes
improves aggregate welfare and significantly increases tax revenue and car ownership,
while reducing average car ages and per household driving and aggregate C'Oy emissions.
However the new policy is not a Pareto improvement absent offsetting transfers: the
change in taxes reduces the welfare of those with long commute distances at the expense
of those with shorter ones.

Our results are made possible by the fact that we can rapidly compute equilibria of the
model using a fast and robust Newton-based solution algorithm that can be nested within
a maximum likelihood estimation algorithm. Using Danish register data, which records
the car ownership and trading decisions of all Danish citizens, we empirically estimate a
version of our model with 8 types of households and 4 types of cars and show it provides
a good approximation to car holdings and trading in Denmark. Our model provides a
simple explanation for a striking zig-zag pattern in scrappage rates of older cars, whereby
cars of even ages are scrapped with significantly higher probability compared to cars
whose ages are odd numbers. We show that this is consistent with the rigorous bi-annual
safety inspections in Denmark. Our estimation results reveal that these inspections have
high perceived “hassle costs” so that once cars are sufficiently old, most Danes prefer to
scrap their vehicles rather than incur the time and expense to repair their vehicles to
pass the mandatory inspection.

The primary contribution of this paper is to advance the state of the art for computing
equilibria in the primary and secondary markets for automobiles and other durable goods.
We introduce a computationally tractable dynamic equilibrium model where new and
used vehicles of multiple types (e.g. makes and models) are traded by heterogeneous
consumers. Prices of used cars equate supply and demand for all car types and traded
vintages. The ages at which cars are scrapped are also determined endogenously as part of
the equilibrium. The model allows for transactions costs, taxes, and flexible specifications
of car characteristics, consumer preferences, and heterogeneity. Our framework can be
used to address a wide range of research and policy questions relating to the primary and
secondary markets for vehicles. We also show how to incorporate a utility-based model

of driving into the model, which is crucial for analyzing environmental policies.



We derive market demand from micro aggregation of an individual-level dynamic dis-
crete choice model of ownership and trade of automobiles. Our specification of consumer
heterogeneity includes additive idiosyncratic generalized extreme value preference shocks
that can be interpreted as unobserved costs of maintaining an existing car, consumer-
specific variations in search/transactions costs, and idiosyncratic variations in transaction
prices and other costs involved in trading cars that constitute an important source of gains
from trade that explain the existence of secondary markets. By varying the scale of these
additive extreme value preference shocks, we show how reductions in consumer hetero-
geneity reduce gains from trade and ultimately kill off secondary markets when trade
frictions are sufficiently large.

The generalized extreme value specification results in logit or nested logit conditional
choice probabilities for the decisions to keep or trade different types and ages of vehicles.
We show how additional persistent consumer heterogeneity can be added, giving us the
flexibility to match rich patterns of trading, including consumers who choose not to own
cars (i.e. “outside good”) and brand loyalty and brand switching behaviors. We show
that the choice probabilities, and thus aggregate demand, are smooth functions of car
prices which allows us to use fast derivative-based methods such as Newton’s method to
solve for consumers’ dynamic trading strategies and equilibrium prices.

We formulate our model and define equilibrium in an infinite horizon stationary en-
vironment. We use the machinery of Markov processes to describe trading behavior and
characterize the vehicle holdings of different types of consumers as invariant distributions
to certain Markov chains. These Markov chains reflect the trading of vehicles, their aging
and the impact of stochastic accidents that result in premature scrappage of some vehi-
cles. Our stationary equilibrium concept results in a very compact and elegant description
of equilibrium that can be extended to non-stationary environments with macroeconomic
shocks and overlapping generations of consumers with finite lifespans.

Section 2 reviews the large theoretical and empirical literature on modeling auto
markets and other durable goods on which we build. Section 3 introduces the basic
model with multiple car brands and idiosyncratic consumer heterogeneity, and Section 4
adds persistent consumer heterogeneity that increases trade of cars between different
consumer types. Section 5 describes how the model parameters can be structurally es-

timated by maximum likelihood using a doubly nested fixed point algorithm (DNFXP)



that recomputes equilibrium prices, holdings and consumer trading strategies each time
the likelihood function is evaluated. We also establish the identification of the structural
parameters. In Section 6 we estimate the model using Danish register data and analyze
the welfare and environmental impacts of changes in Danish car tax policies. Section 7

concludes with a discussion of various directions in which the model can be extended.

2 Previous work on modeling automobile markets

A starting point of any discussion of the literature on equilibrium models of automobile
markets is the well-known BLP model (Berry, Levinsohn and Pakes, 1995). This influ-
ential work focuses on the primary market for new vehicles, but ignores the presence of
the secondary market and the substitution possibilities it offers consumers. Rust (1985b)
and Esteban and Shum (2007) were the first to tackle the challenging problem of solving
for a full equilibrium in both the primary and secondary markets for automobiles. Rust
studied the simultaneous determination of price and durability by a monopolist new ve-
hicle producer, while Esteban and Shum studied oligopolistic pricing of competing new
vehicle producers. To make progress, both of these studies assumed stationarity and zero
transaction costs, which implies that consumers trade each period for their most preferred
vehicle in the entire market.?

We build on a substantial literature focused on modeling equilibrium in secondary
markets for automobiles, taking the price of new vehicles as given. The earliest work
that we are aware of in this literature is a series of papers by Manski (1980), Manski
and Sherman (1980), and Manski (1983). These papers introduced theoretical models of
equilibrium in secondary markets for cars that could be numerically solved for prices and
quantities and used for policy forecasting of a wide range of policies of interest.

The next important early contribution was Berkovec (1985), who microeconometri-
cally estimated and numerically solved a large-scale equilibrium model of the new and
used vehicle markets using a nested logit model. He defined “expected excess demand”
by summing estimated discrete choice probabilities for cars of each age and class, net of

scrappage.® Berkovec computed equilibrium prices using Newton’s method to find a zero

2Esteban and Shum (2007) also assume quality ladder preferences, which further simplifies the choice problem.
3Berkovec used a probabilistic model of vehicle scrappage from Manski and Goldin (1983), where the proba-
bility a vehicle is scrapped is a decreasing function of the difference between the second-hand price of the vehicle
(net of any repair costs) and an exogenously specified scrap value for the vehicle. This implies that, except for



to a system of 131 nonlinear equations representing the excess demand for the vehicles
in his model.*

The contributions of Manski, Sherman, and Berkovec were extremely advanced given
the computing power at the time, and in many respects represent the closest point of
departure for our own work. However, their work was based on short run, static equi-
librium holding models of the market. Implicit in the static discrete choice formulation
is the assumption that consumers only keep their vehicle for a single period, so that
at the end of each period consumers trade their current vehicle for their most preferred
vehicle. Rust (1985a) formulated the first dynamic equilibrium model of automobile trad-
ing.® He assumed the state of a vehicle is captured by its odometer reading z;, which
evolves according to an exogenous Markov process representing variable usage of cars
with transition probability ®(zy1|z;) that reflects stochastic usage and deterioration of
vehicles.®

When there are no transaction costs and the economy is in a stationary equilibrium
(i.e. no macroeconomic shocks or other time-varying factors altering the market), the op-
timal trading strategy involves trading every period for the most preferred age/condition
of vehicle z*(7), where 7 indexes potentially heterogeneous preferences over “newness”
of vehicles. However, the assumption of zero transactions costs is unrealistic, and so
is the excessive trading behavior it implies. When there are transactions costs (which
are distinct from trading costs, i.e. the difference between the price of a car z a con-
sumer wishes to buy, P(x), less the price P(z") of the car 2’ that the consumer wishes
to sell), the optimal trading strategy involves less frequent trading and consumers will
generally keep cars for multiple periods. The optimal strategy then takes the form of
an “(S,s) rule” reminiscent of optimal inventory theory: trade is characterized by two

thresholds (z*(7),7*(7)), where z*(7) < Z*(7) and z*(7) is the state of the optimal

random accidents, there is very little chance that new vehicles are scrapped, but the probability a used vehicle is
scrapped increases monotonically with the age of the vehicle.

4Berkovec showed that the Jacobian matrix had special structure he called “identity outer product” that
enabled him to invert the Jacobian via inverting a smaller 48 x 48 matrix and doing some additional matrix
vector multiplications.

®Other dynamic models of vehicle choice appeared around this time such as Mannering and Winston (1985)
but their analysis focused on dynamics of utilization, but did not consider dynamics of car trading or equilibrium.
In subsequent work Winston and Yan (2021) develop empirically estimable model of dynamics of utilization and
trading of cars, but in a partial-equilibrium framework.

5Since x; fully captures the state of a car and is observable by both parties in a transaction, Rust’s analysis
avoided “lemons problem” information asymmetries of the type analyzed in the seminal work of Akerlof (1970)
that can potentially kill off the secondary markets for cars.



replacement vehicle whenever the consumer trades in for a new one. T*(7) is the re-
placement threshold or odometer threshold where it is optimal to trade the current car in
condition x for a replacement car in condition z*(7). When transactions costs are zero,
then 7*(7) = 2*(7) = 2*(7) and it is optimal to trade for the optimal car z*(7) every
period. However, in a homogeneous agent economy, the slightest transaction costs will
completely kill off the secondary market, driving all consumers into an autarkic “buy and
hold” equilibrium where all consumers buy brand new vehicles whenever they trade (i.e.
2*(7) = 0) and hold them until it is optimal to scrap their current car when the odometer
exceeds an optimal replacement threshold 7*(7).

There are potential gains from trade in a heterogeneous agent economy that enable
the existence of secondary market and a wide range of car trading strategies. However
establishing the existence of a stationary equilibrium in such an economy in the presence
of transactions costs is challenging. Consider a consumer of type 7 who desires to buy
a vehicle with z*(7) > 0. When there are transactions costs there is no guarantee that
some other consumer 7 is willing to sell their vehicle at z*(7). Using advanced methods
from functional analysis (e.g. the Fan-Glicksburg fixed point theorem), Konishi and
Sandfort (2002) established the existence of a stationary equilibrium in the presence of
transactions costs under certain conditions. Their proof shows that it is possible for the
equilibrium price function P(z) to adjust to prevent such coordination failures. However
to our knowledge, there has been no work actually calculating equilibria with transactions
costs in this infinite-dimensional setting.

Stolyarov (2002) advanced the literature by assuming that the state of a vehicle can be
summarized by its age a, which can take only a finite number of values, a =0,1,2,..., a,
where a is age when cars are scrapped. Stolyarov introduced a continuous uni-dimensional
parameterization of consumer heterogeneity with quasi-linear preferences, and computed
equilibria in the presence of stochastic transactions costs using a fixed point formulation
of the problem. Gavazza, Lizzeri and Roketskiy (2014) extended Stolyarov’s approach
by allowing households to own up to two vehicles using a two-dimensional specification
of consumer heterogeneity. They find that transaction costs have a large effect on equi-

librium trade.”

"There is a close connection between models of automobile trading that incorporate transactions costs and
models that emphasize information asymmetries, such as Akerlof (1970). House and Leahy (2004) show how
adjustment costs of the (S, s) variety discussed above “arise endogenously from adverse selection in the secondary



Our model can be thought of as combining Stolyarov (2002) with the earlier work by
Manski and Berkovec by using a multi-dimensional extreme value specification to capture
idiosyncratic consumer heterogeneity. We use a hierarchical specification of heterogeneity
that includes both time-varying idiosyncratic preference shocks (i.e. the extreme value
error terms in the model) as well as flexible specifications for persistent heterogeneity and
fixed consumer types 7. The extreme value distribution allows for continuous formulas for
choice probabilities even in the case where there is no other time-invariant heterogeneity,
and this continuity permits us to demonstrate the existence of equilibrium via the Brouwer
fixed point theorem. More importantly, we show that the excess demand function for used
cars in our model, ED(P), is a continuously differentiable function of P that enables us
to rapidly and accurately calculate equilibrium prices by solving the system of nonlinear
equations ED(P) = 0 by Newton’s method. This makes our approach very attractive for

use in empirical work and policy modeling.

3 Equilibrium with Idiosyncratic Consumer Heterogeneity

In this section we introduce a dynamic model of equilibrium trade in the automobile
market. We use the concept of stationary flow equilibrium in the market of stochastically
deteriorating durable goods from Rust (1985a) but adapt it for the discrete goods trade
in presence of flexible transactions costs. We start by considering equilibrium with J
different makes/models of cars and a unit mass of consumers whose preferences for cars
as well as the outside option, are idiosyncratically heterogeneous. We adopt a generalized
extreme value (GEV) specification of consumer heterogeneity that results in a nested logit
specification for choice probabilities similar to Berkovec (1985). In subsequent section we

extend the framework to persistent heterogeneity in consumer preferences.

market.” (p. 582). For example, there are “lemons laws” in many countries that require sellers to compensate
buyers for defects or problems in a car that were not disclosed and negotiated on at the time of sale. Dealers
typically perform inspections and repair cars before selling, and often provide a limited term warranty, all of
which mitigate the informational asymmetries and result in transactions costs that are often borne by the dealer.
As a result, it is not clear that informational asymmetries seriously inhibit trade in used vehicles, but they would
be expected to show up in transaction costs. Hendel and Lizzeri (1999) study equilibria in auto markets with and
without asymmetric information and find that adverse selection does not necessarily kill off the secondary market.
They find it difficult to empirically distinguish between predictions of models with asymmetric information and
those with transaction costs, and argue that, for Fords and Hondas at least, the evidence does not support adverse
selection as the primary reason for steeper price declines of Fords as the vehicles age. In light of this, we use
transaction costs to capture various trade frictions in auto markets including informational ones.



3.1 Key assumptions and restrictions

We consider a stationary equilibrium in an infinite horizon economy where cars are ini-
tially sold as new in the primary market and then traded in used car markets called
“secondary markets”. Consumers make purchase, replacement, trading and scrapping de-
cisions to maximize expected discounted utility with a common discount factor 5 € (0, 1).
We focus on a stationary environment and do not allow for any “macro shocks” that could
lead to time-varying fuel prices or prices of new cars.®

Our concept of equilibrium results in endogenous determination of a vector of equilib-
rium prices P with typical element Pj,, where j € {1,...,J} indexes makes/models, and
a € {1,...,a — 1} indexes the ages of the traded cars. When the cars reach the upper
bound a, they are no longer safe to drive and are not allowed to be kept or traded and
must be scrapped.” We treat the model as a “small open economy” where new car prices
are determined in the world market with an infinitely elastic supply of new cars at prices
P;.1° We assume there is an infinitely elastic demand for cars at any age including a for
their scrap value P; which normally results in P;, > P;, Vj, a, provided that the level of
transactions costs is not too high.

In our framework all persistent differences between the cars are captured by the
make/model j € {1,...,J}, and all time-varying characteristics of cars are reflected
by the car age a € {1,...,a}. The unit mass of cars in the economy is distributed among
Ja types given by the combination of car make/model and age (j,a). Clearly used cars
of the same age and type have idiosyncratic features, such as odometer reading which we
ignore, making it inconsistent with a single common price Pj, for all used cars of age a
and make/model j. This is partially accounted for in our framework but the stochastic
GEV shocks which not only reflect idiosyncratic heterogeneity in consumer preferences,
but also idiosyncratic features of different used cars of the same age and type. Thus, we
can interpret Pj, as the average price of a car of type j and age a, and components of

the idiosyncratic shocks reflect customer and car-specific deviations in these prices from

8 Although it is possible to extend our framework to allow for macro shocks, this fundamentally changes the
definition of the equilibrium. We defer this extension to the future work due to the vastly greater computational
challenges that it presents, as noted in the work of Krusell and Smith (1998) and Cao (2016).

9The same upper bound is assumed to hold for the cars of all makes/models without loss of generality to
simplify exposition. It is straightforward to allow upper bound to be j-specific with more complicated notation.

YHowever, our framework can be used for modeling competition in the primary market for new cars, where
P; can be set taking into account the substitution effects not only between different types of new cars but also
between new and used cars.



the market average prices that are determined endogenously in equilibrium.
We assume that consumers’ preferences are characterized by a common quasi-linear

utility function
U(-) = u(j, a) — p[operating costs + trade and transaction costs],

where the first term captures the utility of owning and using a car and the second term
accounts for the monetary costs of ownership and trade. We assume that the marginal
utility of an additional car is sufficiently small such that no consumer would want to own
more than a single car.!! The parameter p > 0 is a simple way to capture income/wealth
effects in the model. High values of i can be interpreted as “being poor” because the cost
of buying a new car will involve a high opportunity cost in terms of forgone consumption
of other goods. We expect the function u(j, a) would be non-increasing in a for all j, and
will later show how it captures the utility of driving (utilization) as well as the expected
non-monetary cost of maintaining a car of age a.

Trade costs consist of the difference in prices of traded cars, with the addition of trans-
action costs. Let (i,a) be the make/model and age of the existing car, and (j, d) denote
the car the household purchases. Transactions costs are given by an function 7'(i, a, j, d)
which depends on both the traded cars and on the whole set of prices {P;, P;} U {Pja},
a€{l,...,a—1}, 5 €{1,...,J}.12 We assume that the transactions costs are borne
by both buyers and sellers. Even though it would be possible to work with general non-
separable specifications for transactions costs T'(i, a, j, d), for simplicity we assume that
these costs are additively separable into two components denoted T;(j,d) and Ts(i,a).
The first component is associated with searching for and buying another car and the
second with undertaking repairs and improvements to make the car of age a that the
consumer is trying to sell acceptable to potential buyers. We do not make further restric-
tions on the function form of the transaction costs, so we can allow for both fixed and
proportional costs, i.e. sales taxes and registration fees.

The total trade and transaction costs associated with selling car (i, a) to buy another

"This is a reasonable assumption for a country like Denmark, where most households only own a single car.
It also greatly simplifies notation and the presentation of our model. The assumption could be relaxed to extend
the model to countries like the United States, where most households own multiple cars.

12 All quantities in the consumer choice problem depend on these prices, but for clarity we do not write this
explicitly until Section 3.4.



car (j,d) are given by Pjq — P, + T3(j, d) + Ts(i,a). If a consumer chooses to “purge”
their car and choose the outside option of not owning a car, the buyer-side components
depending on (j,d) disappear from the expression, so the consumer only faces the seller-
side transaction cost. Similarly, if a person without a car decides to purchase one, the
seller-side components depending on (i,a) disappear from the trade costs. Finally, we
assume that the trade-in price P; for the cars being scrapped already includes all the
costs associated with de-registering and transporting the clunker to the scrap yard. That
is we normalize the seller-side transaction cost of scrapping to zero. Similarly, we assume
that the search cost is negligible when buying a new car, and therefore normalize the

buyer-side transaction cost for the new car buyers to zero.

3.2 Consumer states and choices

The state of a consumer in any period ¢ is given by the vector (i,a,e) where i €
{¢,1,...,J} denotes the make/model of car the consumer owns at the start of the pe-
riod, and a € {o,1,...,a} denotes its age. We use the special symbol ¢ to denote the
state of not owning a car. The random component of the state vector € incorporates the
(idiosyncratic) heterogeneity in cars and consumers.

We assume that at the start of each period a consumer who owns an existing car (i, a)
can choose whether to keep it, trade it for another car of make/model (j,d), or choose
the outside option of not having a car at all. We assume trade occurs instantaneously
at the start of each period, and thus the cars (j,d) that households hold after trading
are utilized until the end of the period. Cars deterministically age from d to d + 1, but
may be involved in total loss accidents which we model by stochastic transition to the
terminal age a with probability «(j,d) € [0,1). The realized state of the car constitutes
the car state at the start of period ¢t + 1. Then instantaneous trading occurs and the
process repeats this way for the infinite future.

The cars which reach the terminal age a by either natural aging or as a result of an
accident are exogenously scrapped and removed from the market during the trading stage.
In addition, unless the existing car (i, a) is kept, it can be endogenously scrapped instead of
being sold on the secondary market. It would seem that all consumers would prefer to sell
their existing used car in the market rather than scrap it, however there are transactions

costs that a seller must incur, and the net value that a consumer might receive from

10



selling a sufficiently old used car may be lower than the value from simply scrapping
it. Our model allows consumers to choose whether to sell or scrap their existing car
depending on which option they prefer, which can also include unobserved idiosyncratic
inspection/repair costs that are incorporated in the GEV shocks we describe below.

Let C(i,a) denote the choice set for the consumer who enters the period with the
existing model i car that is a years old. If the consumer has no car (a = ¢) they
can choose to remain in the no-car state (d = ¢), buy a new car (d = 0) of any type
j € {l,...,J}, or one of the vintages available for sale in the secondary market. If the
consumer already owns a car model ¢ of age a < a, they have an additional option of
keeping it which we denote d = k. However, once a car reaches the terminal age @ it is no
longer possible to keep it according to our assumption of exogenous scrappage.'® Every
time an existing car is traded, the consumer chooses to either sell it on the secondary
market which we denote by s = 0, or to take it to the scrap yard we denote by s = 1;.
The set of feasible choices for a consumer in a car state (i, a) is thereby summarized as

follows!:

C(eo) =C(i,a) ={e} U {1,...,J} x{0,1,...,a—1} ,Vj (1)
Cli,a) = {(2,1,),(8,05),k} U {1,....J} x{0,1,...,a— 1} x {1,,05} ,¥j,a < a,

Since cars can only be scrapped when they reach the upper bound on age a, they cannot
traded, and therefore the oldest car that be purchased in the secondary market is a — 1
periods old.

The random component € is a vector whose dimension equals to the number of elements
in the choice set. We assume that € has a multivariate GEV distribution which allows for
flexible dependence between its elements, but that the vectors are drawn independently
between time periods and individuals, capturing the idiosyncratic heterogeneity between
them. The elements of the vector € in turn capture the differences between the discrete
choices available to each individual, such as maintenance expenditures, search costs, and

variability in the prices of traded cars that reflect their idiosyncratic features.'

13The difference between the decision d = & to keep the current car of age a and the decision d = a to trade
for another car of the same age and model j = i is in the incurred transaction costs.

1 To simplify notation here and throughout the paper we use single ¢ symbol for the no car state, i.e. C(9)
instead of C'(g, 9).

5The components of € should be interpreted in an ez ante sense, as the idiosyncratic utility/disutility the
consumer can expect from undertaking a search for a used car of a given type. We do not explicitly model the

11



Figure 1: Example of consumer choice tree

l j =0 (purge) l j=K keep l je{l...J} (replace)
s =1, (scrap) l s =05 (sell) y/g j=J-1
ld:O(new)l ld:(’zfll
s=14 s =04 s=14 s =04 s=14 s =04 s=15 s =04
(scrap) (sell) (scrap) (sell) (scrap) (sell) (scrap) (sell)

Notes: The figure presents an example of the choice tree for a consumer who owns a car under the nested logit
specification of the GEV distribution of the idiosyncratic heterogeneity term e. Note three choice nests at the
top level (to purge, keep or trade the existing car), two intermediate levels of nesting in the case of trading, and

a additional scrappage choice of the existing car in the cases when it is traded.

The GEV distribution we apply in our framework generalizes the standard multivari-
ate extreme value distribution and results in the choice probabilities that take the form
that McFadden (1981) called the nested multinomial logit (NMNL) rather than standard
multinomial logit (MNL). Under this specification it is possible to control for correla-
tion patterns in different subsets of the overall choice set C(i,a), and the choice itself
can be represented as a sequence of choices from nested subsets (i.e. a filtration) of
C(i,a). However, even with this representation, all decisions are made simultaneously
and instantaneously at the beginning of each period as described above. The patters of
interdependence of the GEV distribution can be illustrated by a choice tree, a directed
acyclical graph such as the one shown in Figure 1.

The choice tree illustrated in Figure 1 is one of the many possible ways to introduce
dependence patterns into the components of the idiosyncratic shocks e. This particular
tree is for a consumer who owns a car, and has four levels: the top level consists of
the choices to purge (j = ¢), keep (j = k) or replace (j € {1,...,J}) the current car.
Conditional on the decision to replace, the second level is the choice of the make/model
7 of the replacement vehicle. The third level contains the choice of the age d of the car

to buy, a new car d = 0. Finally, the fourth level contains the choice of whether to sell or

sequential search process in this paper, nor do we model the “microstructure” of auto dealers and other places
consumers go to search for and buy used cars.
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scrap the existing car if it is not kept.'® Each level choice, apart from top choice j = &
in our example, there is a subtree of lower level choices eventually leading to a distinct
leaf of the tree corresponding to a particular alternative in the choice sets defined in (1).

Dependence patterns in the distribution of the elements of € are determined by a set
of scale parameters which can be defined individually for the alternatives immediately
below the top node of each subtree of the overall choice tree. For example in Figure 1,
the parameter o controls the scale of idiosyncratic shocks at the top level choice set
{¢,K,{1,...,J}} involving the decision to have no car, keep the current car, or trade
for some other new or used car. The parameter o, controls the degree of similarity in
the unobserved shocks affecting the choice of one of the J different types of cars, i.e.
idiosyncratic heterogeneity in “brand effects”. The parameters o;, j € {1,...,.J} control
the scale of idiosyncratic shocks affecting the choices of different ages of cars of a given
make/model. Finally the parameter o controls the scale of idiosyncratic shocks reflecting
unobserved components of transaction, inspection and repair costs involved in selling the
current car versus scrapping it. McFadden (1981) showed that in order for the GEV
distribution to be a valid multivariate probability distribution the similarity parameters
must form a non-increasing sequence along any particular branch. In our example this
implies that o > 0, > 0; > o, for all j € {1,...,J}. As any of the similarity parameters
approaches zero, the choice in the corresponding choice subset becomes deterministic, as
do the choices in the subtrees below. When o = 0, = 0; = 0, the choice tree collapses to
a one level tree with all alternatives in the chocie set C'(i,a) on the same level. This is
the MNL case with the implied Independence from Irrelevant Alternatives (IIA) property:

i.e. there is no dependence among the components of e.

3.3 Consumer dynamic choice model

The optimal trading/holding strategy for cars is given by the solution of their infinite
horizon expected utility maximization problem, which constitutes a discrete choice dy-
namic programming problem (Rust, 1987, 1994). Let V (i, a,€) be the value function for

a consumer in state (i,a,¢€), i € {0,1,...,J}, a € {9,1,...,a}. For a consumer who does

16The fourth level scrappage choice appears on level two for the top level decision to purge without loss of
generality.
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not own a car it is given by:

V (g, €) = max |v(g,9) + €(o); Aeglaxj} [v(0,7,d) + €(5,d)] | (2)
FEATR M

where the choice specific value functions of remaining in the no car state and of leaving

the no car state to buy a car of type j age d respectively are given by:

v(9,0) = u(e) + BEV (0), (3)
U(@ujv d) = U(], d) - H[de + Tb(jv d)}
+ B(1 = a(j,d))EV(j,d+ 1) + Ba(j,d)EV (j,a).

The ezpected value functions EV (¢) and EV (7, a) provide the conditional expected values
of starting the next period respectively without a car, and with car of type ¢ and age «a,

and are given by:

EV(g) = /V((D?e)f(e\@)de, EV(i,a) = /V(z’,me)f(e\i,a)de, (4)

€ €

where f(e|-) is the corresponding probability density function of a GEV distribution for
the idiosyncratic shocks e. Implicit in these formulas is the assumption that idiosyncratic
shocks affecting the consumer’s choice are independent of their past realizations. This
implies that the E'V(-) functions only depend on the car that has been driven and aged
during the current period and constitutes the car state in the beginning of the next
period. Under our assumption of GEV distribution of idiosyncratic shocks €, the integrals
in (4) can be expressed in closed-form. The formulas depend on the assumed nesting
structure of the choices. Later in this section, we provide the analytic formulas for EV(+)
corresponding to the nesting structure in Figure 1.

The value function for a consumer who starts the period with a car of terminal age a

is similarly given by:

V(i,a,e) = max |v(i,a,0) + e(g); glaxj} [v(i,a,j,d) +€e(j,d)] |, (5)
je{l,n T},
de{0,1,. a1}

where again the first component corresponds to the decision to choose the outside option
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of not owning a car, and the second to the purchase of a new car of type j and age d.
Because at terminal age a the car is scrapped exogenously, the consumer does not have
the option of keeping their car, and also does not have an additional choice of endogenous
scrappage of the existing car (i,a). This is why the the Bellman equation (5) looks very
similar to that of the consumers who do not own a car (2). The difference, however, is in
the net scrap value P, the consumer receives from the scrap yard net of towing and other

costs of scrapping. Therefore the relevant choice specific value functions are given by:

v(i,a,0) = u(p) + pP; + PEV (0), (6)
U(ia d>j7 d) = U(], d) - :u[P]d - Bz + Tb(j7 d)}
+ B(1 — a(j,d))EV(j,d + 1) + Ba(j, d)EV(j,a).

Finally, the value function for a consumer who starts the period with a car of type @
and age a is given by:

U(iv a, ’%) + E(/{);
Viia ) = max | M%setin0. [0 0,0,5) + €(0,5)]; | ()

max je{1,...,J}, [U(iaaaja d75) + E(j, d,S)]
d€{0,1,....a—1},
56{13703}

In this case the endogenous scrappage choice s € {15, 0,} has to be accounted for, so the
complete set of choice specific value functions which correspond to all the alternatives in

the choice set C(i,a) defined in (1), is given by:

v(i,a,0,1,) = u() + pP; + BEV (9), (8)
v(i,a,8,05) = u(0) + p[Pa — Ts(i,a)] + BEV (9),
v(i,a,k) = u(i,a) + (1 — a(i,a)) EV(i,a + 1) + Ba(i,a) EV (i,a),
v(i,a, j,d, 1) = u(j,d) — p[Pja — B; 4+ Ty(j, d)]

+6(1 — a(j,d)) BV (j,d +1) + fa(j,d) EV (j,a),
U(i, a,j, d, 03) = (]7 d) - H[]Djd - Pia + Ts<i’ CL) + Tb(ja d)]
+B(1 = a(j,d))EV(j,d+ 1) + Ba(j,d)EV (j,a).

Here v(7,a,0,04) is the value of selling the car on the market and not replacing it,
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v(i,a,0,1,) is the value of scrapping the car and not replacing it — in both of these
cases the customer has no car to drive and ends up in the no car state in the next pe-
riod.!” The value of keeping the existing car is given by v(i,a, k), and the values of
trading the existing car (i,a) to a replacement car (j,d) is denoted v(i,a,j,d,0s) and
v(i,a,7,d, 1), respectively, depending on whether the existing car is sold or scrapped.
Combined, the value functions defined in (2), (5) and (7) cover the whole state space of
the problem (i,a,¢€),i € {0,1,...,J}, a € {0,1,...,a}. With their corresponding choice
specific values, and the general formula for the expected value function (4), we can define
the Bellman equation for the consumer choice problem as a mapping of the space of value
functions V (i, a, €) to itself, and standard contraction mapping arguments guarantee that
V' is the unique fixed point to the “Bellman operator”. However, the problem can be
solved in a computationally much easier fashion in terms of the “projection” EV(i,a)
which as we noted above is a much lower dimensional object since it does not depend
on the continuously distributed idiosyncratic state variables e.!8 EV is just a finite
dimensional vector, EV € R/ whose elements are the expected values of starting the
next period in car state (i,a), 1 € {1,...,J}, a € {1,...,a}, or with no car.'® Applying
equations (4) for each element of vector EV, plugging in the expressions (2), (5), (7)
and their corresponding choice specific value functions, we derive the system of Ja + 1

nonlinear equations

EV =T(EV), (9)

whose solution enables us to reconstruct V' and characterize optimal trading behavior.
Here I' is the smoothed Bellman operator that constitutes a contraction mapping and
hence has a unique fixed point. Further, I' is a smooth mapping from R”7#*! to R/@+!,
which enables us to use Newton’s method in combination with the method of successive
approximations to rapidly compute this unique finite-dimensional fixed point and thus

solve the consumer choice problem for any set of car prices.?°

1"Recall that by our assumption the transaction cost of selling to the scrap yard is normalized to zero, i.e.
included into P,.

18 Another though inferior possibility is to formulate and solve the Bellman equation in the space of choice
specific value functions, which depend on both state and choice variables, and thus constitute even higher dimen-
sional object than the value functions themselves. All three ways to set up the fixed point problem are equivalent
in the sense that they lead to the same solution, and the corresponding functional mappings are contractions
(Ma and Stachurski, 2021).

19Recall that due to our timing assumption it is not possible to start the period with a new car (a = 0): all
new cars purchased during the trading stage become one year old cars by the start of the next period.

208ee Lemma L2 for details and proof.
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Under the GEV distributional assumption, the integrals in the equation (4) have closed
form expressions, further contributing to the computational tractability of the problem.
The analytic form of these depends on the assumed nesting of choices in the decision
process, as in the example illustrated in Figure 1, and the implied dependency structure
of the elements of e. Generally, the choice specific values v(i, a, -) which correspond to the
bottom layer of the nodes in the tree, are combined together following the tree structure

with the help of McFadden’s (1981) log-sum (smoothed max) function Z(-), defined as:
I(A7X17"'7Xn>:)\log(exp%—i_"'_'_expr)u (10)

where A takes the value of the scale parameter in each particular grouping of alternatives

(nest). Using the example choice tree in Figure 1, we have:

EV@4@::IQLI@%J(LQQ,h%v@¢%@09%v@¢uﬁxzﬂnrhw.w]ﬁ), (11)

7

NV Vv
purge keep replace

where [, are the inclusive values of trading to a car make/model j, which are found by

recursively applying the log-sum function (10) to the further nests as:

I; =7(0j,1(i,a,j,0,),...,1(i,a,j,a — 1)),
N————

new car

where (i, a, j,d) = I(as, v(i,a,j,d,15),v(i,a, j,d, OS)) is the inclusive value of the nested
scrappage decision corresponding to the choice of car j of age d € {0,...,a—1}, including
the new car. When scale parameters are equalized, o = 0, = 0; = 0,, the above nested
log-sum functions collapse and the expected value involves a single log-sum formula where
the choice specific values correspond to all alternatives in the choice set C(i,a). The
expected values EV (p) and EV (i, a) involve similar closed-form expressions.

Let II(j,d, s|i,a) be the conditional probability of choosing a feasible alternative
(7,d, s) from the choice set C(i,a) by a consumer in a given car state (¢,a). Under the
GEV assumption these choice probabilities take NMNL closed form expressions which
also depend on the structure of the choice tree (McFadden, 1981). For example, under

the choice structure in Figure 1 the top level probability of keeping the existing car follows
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directly from (11):

II(k|i,a) = (12)

exp(v(i,a,K)/o)
exp(Z(os,v(i,a,0,15),0(i,a,0,05)) /o) + exp(v(i,a, k) /o) + exp(Z(oy, 1, ..., 1)) /o)

For more complicated nested choices such as the choice of scrapping/selling the existing
car (i,a) and replacing it with car (j, d) following the choice tree in Figure 1 the choice

probability I1(j, d, s|i, a) can be decomposed into products of conditional probabilities as:
H(]’ d’ Sl/L? a) = H(replacell7 a) ' H(]|{17 MR J}? /1:7 a) : H<d|j’ 7:7 a) ' H(S|]7 d7 /1;7 a)? (13)

where TI(replace|i, a) denotes the probability of trading for some type of car, the choice
probability TI(j|{1, ..., J},i,a) corresponds to choosing a particular make/model j con-
ditional on having decided to replace the existing car (i,a), II(d|j,7,a) is the choice
probability for a particular age d, and Il(s|j, d,i,a) is the probability of the choice of
scrapping the existing car (i, a) or selling it in the secondary market. These probabilities

are given by the following expressions:

[I(replaceli,a) = (14)

exp(Z(op, L1, ..., 15)/0)
exp(Z(os,v(i,a,0,1,),v(i,a,0,0,)) /o) + exp(v(i,a, k) /o) + exp(Z(o,, L1, ..., 1) /o)’

H(jl{la T ‘]}7 2 a) - eXp(]1/o'jjj—)(-I-j-/j—-re)xp(]J/O'v")7 (15)

exp(I (2 a,j,d)/o;)
exp(I(i,a,j,0)/0;) + - +exp({(i,a,j,a — 1) /o)
exp(v (z,a,j, d,s)/os)
exp(v(i, a,j, d, 18)/05) + exp(v(z', a,j, d, 15)/05) '

I(d]j,i,a) =

(16)

[(s|j,d,i,a) = (17)

The remaining choice probabilities for all feasible alternatives in the choice sets (1) cor-
responding to all other states in the model (including having no car ¢ = ¢ or having
the car of terminal age a = a), have similar closed form expressions which combine the
corresponding choice-specific value functions implied by the assumed nesting structure of
choices.

Due to additively separable transaction costs, and provided that the scale parameter o,
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is the same in all nests of the choice tree where the decision is relevant, the choice between
scrapping and selling the existing car is independent of the choice of the replacement car
and has no implications for the future periods. This implies that the scrap/sell decision
is static, so Il(s|j,d,i,a) = Il(s|i,a) and we can generally factor any choice probability
as I1(j, d, s|i,a) = 11(j,d|i, a)I(s|i, a), where we refer to I1(j, d|i, a) as the trading choice
probability, and II(s|i,a), s € {1,05} as the endogenous scrappage probability. It is
readily verified that the scrappage probability is the same for both the case of purging
and replacing the current car (i,a), so for all¢ € {1,...,J}, a € {1,...,a— 1}, it is given
by:

(L a) = (1+exp (4[Pu — Tu(i.a) - 2)) (18)

In other words, car owners choose to scrap or sell their existing car based on the difference
between the market price net of seller transactions cost and the scrap value of their car,

conditional the marginal utility of money p and the scale parameter os.

3.4 Equilibrium with idiosyncratic consumer heterogeneity

With the consumer dynamic choice problem fully described, in this section we turn to
the definition of stationary equilibrium in the secondary market for automobiles. Recall
that we assume that the prices of the new cars ?j, j e {l,...,J} are fixed, and that
the supply of new cars is infinitely elastic. Similarly we assume that there is an infinitely
elastic demand for cars for their scrap value P;, and so we also treat the scrap value of
a car of each type j as fixed. We also assume that all cars have to be scrapped at the
upper bound age a.

The used cars of age from a = 1 to a = a — 1 of each make/model are traded in the

secondary market. Supply and demand of these J(a — 1) tradable goods are balanced by

J(a — 1) prices which we combine into the J-block price vector
P=(Pi . Py) = ((Priso o Paca)s oo (P Pracy) ) €R7ED. 0 (19)

The value functions and choice probabilities derived in the previous subsection are all
implicit functions of P, though we suppressed their dependence on P so as not to overload
the notation.

Let 0 < ¢, < 1 denote the fraction of the unit mass of households in car state

19



(,a), namely those who own the car of make/model ¢ of age a at the start of the period
before the trading phase. Let 0 < g, < 1 be the fraction of households without a car. The
ownership distribution vector ¢ summarizes the distribution of the unit mass of consumers

in the economy over all possible car states:

q= (Q1,-~,QJ,Q¢) = <(q11a-~->q1&)7--'7(QJ17-~'7QJ&)7Q(D> e R/ (20)

The ownership distribution ¢ is a proper probability vector (its elements sum up to 1),
and thus belongs to the Ja-dimensional unit simplex. The subvectors of the ownership
distribution ¢; correspond to the particular makes/models of the car, and do not represent
a proper distribution unless normalized. The conditional distribution (i.e. market shares)
of all cars in the economy is a vector with one less element than ¢, and can be constructed
by using its first Ja elements, multiplied with the normalization constant 1/(1 — g,).

Though we have a continuum of consumers, we are studying an economy with a
finite number of goods, so our concept of equilibrium involves the traditional approach
of finding a vector P that equates supply and demand for all used cars in the secondary
market. However with a continuum of consumers, we will define supply and demand in
terms of the fraction of the total population of consumers who wish to sell and to buy a
car of a given type and age, (j,d).?' Let D;4(P, q) be the demand for make/model j cars
of age d. Conditional on the ownership distribution of consumers ¢, for j € {1,...,J},
de{l,...,a— 1}, it is given by

J a
Diu(P,q) = 1(j, dlo, P)go + 3 S T1(j, dli, @, P)gia, (21)
i=1 a=1
where we now include P as an argument of the choice probabilities I1(j, d|-, P) to empha-
size their dependence on market prices.

The supply of used cars to the secondary market are those which are not kept and
not scrapped. The corresponding fractions of consumers are given by the complements to
the choice probability of keeping, II(x|i,a, P) and scrapping, II(1,]é, a, P). Let S;q(P, q)
be the supply for the cars of make/model j of age d, j € {1,...,J}, de€ {l,...,a— 1}.

21Each consumer in the economy chooses the alternative that maximizes their payoff conditional on their
independent draw of the random component €; by the Law of Large Numbers, these deterministic individual
choices aggregate to population shares that are defined in terms of ¢ and choice probabilities.
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It is given by
de(P7 Q) = (1 - H(/{bv d7 P)) (1 - H(15|], da P))Q]d (22)

Supply and demand of the cars of all make/models and all ages can be stacked in the
same way as price vector (19) to form the J-block vectors of demand and supply, D(P, q)
and S(P,q). We then define the vector of excess demand as

ED(P,q) = (Di1(P,q) — S11(P,q), ..., Dya_1(P,q) — Sya1(P,q)) € R7@D  (23)

In equilibrium the prices equate supply and demand of used cars resulting in zero excess
demand, so equilibrium prices are a solution to the non-linear system of .J(a—1) equations
given by ED(P,q) = 0 with J(a — 1) unknown prices P.

Besides the market clearing condition which has to hold in each time period, in a
stationary flow equilibrium we require the ownership distribution ¢ to be time-invariant.
The evolution of ¢ can be broken into two stages: 1) an instantaneous trading phase in the
beginning of each period, and 2) the rest of the period when car utilization takes place.
After the trading phase ownership of cars changes due to trade between households. Also
old cars are scrapped and new cars purchased. Then between periods t and £+ 1 the state
of cars change as they either become one period older or are involved in an accident.

To describe the two phases of the evolution of the ownership distribution we rely on
the tools from Markov chain theory, and describe car ownership and state transitions
using two transition probability matrices ¢ and Q(P) defined below. Let Q(P) be the
(Ja+1) x (Ja+ 1) trade transition probability matriz given by

(A (P) + A (P) A1 (P) .. A1 (P) A1y (P)
Ay (P) Ags(P) + Ay(P) ... Asy(P) Asy(P)
Q(P) = : : : : . (24)
A (P) Ao (P) . Ay (P)+ AN P) Ay(P)
Agi(P) Ag(P) . Ayy(P) (0|0, P) |
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where the typical @ x @ block of replacing choice probabilities A;;(P) is given by:

H(],l’l,l,P) H(],C_l— 1’2,1,]3) H(],O’Z,l,P)
Ay(P) = ., (25)
M(j,1li,a—1,P) ... T(j,a—1li,a—1,P) TI(j,0/i,a— 1, P)
L H(]71|Z,C_L, P) H(],C_L— 1|’L,C_L, P) H(j,0|Z,C_L7 P) ]

and the typical @ x a block of keeping choice probabilities A;(P) is given by:

(kli,1,P) ... 0 0

Ai(P) = (26)
0 ... H(sli,a—1,P) 0
0 0 0

In addition, the bottom row and the rightmost column blocks in (24) are given by:

(g7, 1, P)
Aﬁj(P) = H(j71|@7 P)v’H<]7a_ 1|@7 P),H(],0|¢, P)]7 Aw(P) = :
II(¢li,a, P)

Each a x a block in the trade transition probability matrix Q(P) refers to the cars
of each make/model. The trade probabilities II(j, d|i, a, P) are strictly positive for non
degenerate GEV distributions for €, form the bulk of the interior of Q(P), and the prob-
abilities of keeping Il(k|i,a, P) appear on the diagonal. The bottom row contains the
probability of buying a car I1(j, d|s, P) by households who don’t have one. The last col-
umn contains the probability II(g|i, a, P) of choosing the no car state, and the bottom
left corner element is the probability of remaining in the no car state I1(¢|o, P).

Note that because the cars of the terminal age a cannot be traded, we use the last
column of each block A;;(P), the sub-transition probabilities for trading car i for car j,
to hold the choice probabilities I1(j, 0|7, a, P) corresponding to buying a new car of type
j. Similarly, the last diagonal element in the each block A;(P) is zero because the cars
of age a can not be kept, and instead have to be scrapped during the trading phase.

The structure of the trade transition probability matrix Q(P) corresponds to the
block structure of the ownership distribution ¢ in (20). The matrix product ¢Q(P)
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represents the distribution of car ownership in the economy after the trading phase,
assuming that all demand is satisfied (which is true in equilibrium). The result is the
post-trade holdings distribution ¢€2(P), which reflects the distribution of car holdings after
the instantaneous trading phase has occurred where new cars are delivered to households
who demand them, and used cars which households choose to scrap (both endogenous and
exogenous scrappage) are removed from the economy. Due to the special arrangement
of the columns in the trade transition probability matrix, the elements in the post-trade
holdings distribution are reordered such that the fraction of owners of new cars in ¢Q2(P)
is the last element in each subvector of length a.

After the instantaneous trading phase, households own and drive their cars and the
aging and accidents in these cars is governed by the (Ja + 1) x (Ja + 1) block-diagonal

stochastic matrix that we refer to as physical transition probability matriz

(0, ... 0 o0
Q= ' , where (27)
0 ... Qs 0
0 ... 0 1
0 1—a(j1) ... 0 a(j,1) |
Qj = 0 0 . 1—a(j,a—2) alj,a—2)| - (28)
0 0 0 1
1 - a(j,0) 0 0 a(j,0)

Each @ x a block @); forms a transition probability matrix which governs the evolution
of cars of make/model j. The first @ — 1 rows of the matrix describe the joint effect of
deterministic aging and stochastic exogenous scrappage. As described in the previous
section, the latter is modeled as a direct transition to the terminal age a with probability
a(j,d) € [0,1), resulting in a compulsory scrappage next period. Cars of age a — 1 reach
the terminal age a with certainty as both aging and exogenous scrappage lead to the same
outcome a. The last governs aging and accidents of new cars. Finally, the bottom right
corner element of () denotes the transition by households who choose the no-car state.

It follows immediately that the product of the post trade ownership distribution and
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the physical transition matrix matrix, ¢Q2(P)Q, gives the ownership distribution in the
beginning of the next period. It is then clear that the stationary ownership distribution
is simply given by an invariant distribution of the matrix Q(P)Q, which the following

theorem shows is unique for any P.

Theorem 1. Let 0 > 0, > 0; > o5 > 0. Then for any vector of prices P there is a
unique invariant distribution q that satisfies the stationarity condition ¢ = ¢QQ(P)Q, and

1s a continuously differentiable function of P.
Proof. See Appendix A.1 (page 64). ]

Uniqueness of the stationary ownership distribution in Theorem 1 simply follows from
the fundamental theorem of Markov chains, once we realize that with positive GEV scale
parameters the choice probabilities have full support, and therefore transition matrix
Q(P)Q is irreducible and aperiodic. However, to show differentiability of ¢(P) with
respect to P we need a more involved argument given in the Appendix.

We are now in position to formally define and prove existence of equilibrium in the
automobile market that extends the stationary flow equilibrium concept of Rust (1985a)

to economies with positive transactions costs and discrete goods.

Definition D1 (Stationary equilibrium in the automobile market). A stationary equilib-

rium in the economy with a unit mass of consumers and cars of J makes/models and ages

bounded above by a, is given by the price vector and the ownership distribution probability

vector (P, q) € R7@Y x RI&HL sych that the following conditions are satisfied:

(a) Consumers follow their optimal trading strategies that arise from the solution of the
dynamic problem (2)-(8);

(b) The market clearing conditions are satisfied: the excess demand is zero;

(¢) The ownership distribution q is time invariant;

(d) New cars are supplied at fived prices P; and scrapped at prices P;, i € {1,...,J},
infinitely elastically.

Theorem 2. The stationary equilibrium in the economy without persistent consumer
heterogeneity defined in Definition D1 exists. In equilibrium the ownership distribution

q satisfies the stationarity condition, and the equilibrium prices P satisfy the market
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clearing condition:

aQ(P)Q = g, (29)
ED(P,q) = 0. (30)
Proof. See Appendix A.2 (page 65). ]

Briefly, the proof uses Theorem 1 to guarantee that the equilibrium distribution ¢
given by (29) is a smooth function of market prices P. The same is true for all major
components of the model, namely the expected values EV which constitute the fixed point
of the Bellman operator I' in (9), all choice probabilities, and the excess demand ED(P, q)
given in (23). Then, given that the excess demand ED(P, q) in our framework is bounded
to the (—1, 1) hypercube, we construct a continuous map satisfying the conditions of the
Brouwer fixed point theorem, which establishes the existence of equilibrium. A number of
intermediate results that the proof of Theorem 2 relies on, and turn out to be very useful
for our computational framework, are formulated as separate lemmas in Appendix A.

It follows directly from the stationarity of the ownership distribution ¢ that the frac-
tion of population without cars is also time-invariant. Algebraically it can be seen from
comparing the last elements in the left and right hand sides of the stationarity condition
(29). Because the last column in @ has only one non-zero element, it follows that

J a
SN (oli,a, P)gia + (o]0, P)gs = go. (31)

i=1 a=1

Thus, a consequence of the stationarity of the equilibrium is that the fraction of consumers
who demand the outside good, i.e. choose not to have a car, in the left hand side of (31)
equals the “supply the outside good”.

Another consequence of Definition D1 and the two conditions in Theorem 2 is that
the economy is in stationary flow equilibrium, i.e. it exhibits the steady flow property
that the outflow of cars due to endogenous and exogenous scrappage equals the inflow of
new cars of each make/model j € {1,...,J}. If the economy were not in a stationary
flow equilibrium there would either be a continual increase or decrease in the total stock

of cars of each type j in the economy over time.
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Theorem 3. In a stationary equilibrium under the conditions of Theorem 2 the steady

flow property is satisfied for each car make/model j € {1,...,J}

a—1 J a
S (5 a, P)(1 = T(kl5,a, P))gja + Gja = 3 3 15,00, a, P)gia + T1(j, 0|0, P)qy -
a=1 i=1 a=1
outflow of scrappedzgrs of make/model j inflow of new ca;s,of make/model j
(32)
Proof. See Appendix A.3 (page 65). O

With the result of Theorem 3, it is clear that Definition D1 defines a stationary flow
equilibrium in the market of new and used cars. Note that Theorem 2 only establishes the
existence of the stationary flow equilibrium, but is silent about its uniqueness. Uniqueness
of the equilibrium ownership distribution under any market prices P is established by
Theorem 1, however, we have been unable to find high level conditions that guarantee
uniqueness of the equilibrium price vector P. Despite this, we have computed many
equilibrium solutions and have never encountered an issue of multiplicity of equilibria
for a variety of utility function specifications and parameter values. Thus, we conjecture
that there are conditions under which a stationary flow equilibrium not only exists, but

is unique.

3.5 Numerical implementation

The key to success for our numerical implementation is the possibility to use the efficient
Newton-based methods for finding the fixed point of the smooth Bellman operator I" in
the dynamic programming part of the model (9), and when solving the nonlinear system
of equations (30) to find the equilibrium price vector P.

As is well known, Newton’s method has a quadratic convergence rate when initiated
from a sufficiently close starting point in a domain of attraction of the solution. In the
dynamic programming part of the algorithm we rely on the globally convergent method
of successive approximations before switching to Newton-Kantorovich iterations, in the
same way it is done in the nested fixed point estimator (NFXP) in Rust (1994). In
the equilibrium price search we initialize the Newton solver at the equilibrium prices
of a similar model without consumer heterogeneity and transaction costs that can be

computed as a solution to a system of linear equations as shown in Appendix B.
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Appendix A contains several lemmas that establish the prerequisite smoothness prop-
erties, and specify the analytical formulas for the required gradients. We first show
that EV is a smooth function of P implicitly defined by the fixed point condition,
EV =T(EV, P). It follows via chain rule that all value functions and all choice probabil-
ities are also continuously differentiable in P. Differentiability of excess demand function
ED(P,q) in P for any ¢ immediately follows.

Uniqueness and differentiability of ¢(P) as an implicit function of P is established by
Theorem 1. Using the chain rule, we obtain the Jacobian matrix for £D (P, q(P)), and
solve the market clearing conditions ED (P, ¢(P)) = 0 as a system of .J(@ — 1) non-linear
equations in prices. We can use Newton’s method for this, but also using the chain
rule to compute the total derivative of ED(P,q(P)) with respect to P, which for lack
of better notation we denote by VpED(P,q(P)). The computational algorithm involves
the following steps:

1. For a given vector of market prices P, solve the Bellman equation (9) for the fixed
point E'V (P) using Newton-Kantorovich iterations;
2. Compute choice probabilities and form the trading and physical transition proba-
bility matrices Q(P) and Q;
3. Compute the ownership distribution ¢(P) as an invariant distribution of Q(P)Q;
4. Calculate excess demand and update prices via Newton’s method
P' = P— [VpED(P,q(P))|"" ED(P,q(P));
5. Exit if convergence criterion for £D (P’ ,q(P’ )) = 0 is satisfied, otherwise replace P
by P’ and return to step 1.
Thus, it is possible to use the gradient-based Newton’s method in all steps of our nu-
merical implementation, resulting in a fast algorithm for computing the stationary flow

t.22 Given how quickly the equilibria can be com-

equilibrium in the automobile marke
puted for various parameter values and specifications of the model, it can be nested within

other algorithms such as a maximum likelihood estimator that we develop in Section 5.

22Implementation code will be available through a public repository.
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4 Equilibrium with Persistent Consumer Heterogeneity

The economy with idiosyncratically heterogeneous households analyzed in the previous
section is sufficient to support trade in presence of transactions costs. However, when we
allow for more persistent consumer heterogeneity there are even larger gains from trade

that result in equilibrium sorting of different ages of cars by different types of households.

4.1 Time invariant heterogeneity

We start with the superficially opposite case to the idiosyncratic heterogeneity considered
in the previous section, namely the economy with permanent household types. However,
the key to tractability of our framework is that we introduce persistent heterogeneity
in addition to the idiosyncratic heterogeneity due to GEV random components. Later
we add an intermediate form of time varying heterogeneity as well, which in the end
gives us the best of both worlds: more realistic flexible forms of consumer heterogeneity,
while retaining the elegance and computational tractability from the nested logit GEV
specification introduced in the previous section. It is essentially a form of “mixed logit”
that has been so useful in empirical work.

We introduce the symbol 7 € {1,..., N;} to denote households of different permanent
types, and denote f, the fraction of households of type 7. The structure of the household
decision problem (2)-(5) is identical for all households, but due to arbitrary differences
in preferences the solution becomes type-specific. Demand and supply from all types
are aggregated in market equilibrium, and households endogenously specialize in their
holdings of different makes/models and ages of automobiles in response to market prices
and differences in their preferences. We allow for essentially unlimited flexibility in how
the preferences of households of different types 7 differ, as long as each type conforms to
the general structure introduced in Section 3.1.

Let u,(i,a) be the utility for owning a car of make/model i and age a by households
of type 7. Solving the Bellman equations (2)-(5) IV, times we obtain the decision-specific
value functions v, (7, a, j, d, s), expected value functions EV,(j, d), and choice probabilities
I1.(j,d, s|i, a, P) for each household type 7, for all states a € {1,...,a,0}, 1€ {1,...,J}
and for all choices in C(i,a) defined in (1).

Denote ¢, the ownership distribution of type 7 households which we define similarly
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to (20) as a proper stochastic vector in R7#*!. The full ownership distribution in the
economy can be written as ¢ = (qi.f1,...,qn, fn,) € RNV but it is sufficient to work
with its type-specific subvectors. Repeating the definitions of supply and demand from
Section 3.4, we can derive T type-specific excess demand functions ED, (P, ¢q;).

To extended Definition D1 for stationary equilibrium to the economy with permanent
household types, note that conditions (a) and (d) remain unchanged, and we only have
to modify the market clearing and stationarity conditions. Bearing in mind that trade is
allowed between household types, ED, (P, q,) does not need to be zero for each 7, instead

the integrated demand has to clear, leading to the following condition

N,
ED(P,q) =Y ED.(P,q.)f. = 0. (33)
=1

Further, with multiple types of households we require stationarity of the ownership dis-

tribution for each household type

qr = q’TQT(P>QT7 VT) (34)

and thus stationarity of the ownership distribution in the whole economy. By making the
aging transition probability matrix @, household type specific in (34), we allow scrappage
probabilities to vary by household type.

Theorem 4. The stationary equilibrium in the economy with T € {1,...,N.} time in-
variant household types in addition to idiosyncratic heterogeneity, see Definition DI,
exists. In equilibrium the ownership distribution ¢ € RNVa+N s composed of type shares
weighted subvectors q,, each of which satisfies the stationarity condition (34), and equi-
librium prices P satisfy the market clearing condition (33). Steady flow property of the

equilibrium continues to hold.

We omit the proof of Theorem 4 because it follows from straightforward modifications
of the proofs of Theorems 1, 2 and 3 of Section 3. Fully detailed proofs are available on
request. But to provide a rough idea of how the proof works, first note that we can use
Theorem 1 to prove that for each consumer type 7 there is a unique invariant distribution
¢ = ¢ (P)Q, and this ¢, is continuously differentiable function of P. Then it follows
from Lemma L2 that ED(P,q) given in equation (33) is a smooth function of P. Then
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following the proof of Theorem 2 we can appeal to the Brouwer Fixed Point Theorem to
prove the existence of an equilibrium with persistent heterogeneity. Finally, the steady
flow equilibrium condition must also hold (otherwise the stock of cars would be continually
increasing or decreasing over time) and this result can be proven via a proof similar to
that for Theorem 3.

Overall, the stationary equilibrium is exactly as described in Section 3: the only
additional step is aggregation of T-specific excess demands. Otherwise, a price vector P
sets excess demand to zero per equation (33) subject to the constraint that the ownership
distributions for all types 7 are stationary per equation (34). Moreover, most of the
theoretical results from Section 3 apply directly for each household type, one by one with
the key exception that excess demand need not be zero type by type, i.e. ED.(P,q,) may
not necessarily equal zero for each type 7 even though aggregate excess demand must be
zero, ED(P,q) = 0.

The computational approach from Section 3.5 does not change much at all: we com-
pute the equilibrium by first solving equation (34) for ¢.(P) which is a smooth implicit
function of P, and repeat this calculation N, times for every 7. Then the functions g, (P)
are jointly substituted into the excess demand, and the corresponding non-linear system
of equations in prices is solved, again with Newton’s method. Therefore, as one part of
the solution algorithm is repeated for each household type, and the other does not depend

on N,, we conclude that the solver is only linearly more computationally costly.

4.2 Time varying and hybrid heterogeneity

Now consider the case of time varying types. Consider an exogenous Markov process with
state space ) and transition density p(y41|y:) for some time varying variable y; that is
household-specific, e.g. income, and which evolves independently for each household.
Assuming y enters the utility for cars, u(j, a,y) or the marginal utility of money, u(y),
the dynamic problem becomes more complex since the household now has to account for
stochastic variation in the y; state variable when considering his/her optimal car trading
strategy. An unexpected negative income shock may induce the household to keep their
older car and delay replacement, or conversely a positive income shock may induce them
to trade their existing car and buy a new one, or upgrade to a different car make/model.

The Bellman equations (2)-(7), which describe the optimal trading strategy, needs
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to be altered to account for the extra state variable y;, and need to include an extra
integration with respect to the transition density p(ys41|y:).?* Assume that {y;} is ergodic

and has an invariant distribution A(y) satisfying

ANy') = /y Py [y)A(y)dy. (35)

In the case when {y;} is a finite state Markov chain instead of a continuous state process,
p is simply a transition probability matrix, and (35) can be written as A = Ap, where A is
a probability distribution vector completely analogous to the distribution of permanent
types (fi,..., fn.) in the previous section.

With time-varying heterogeneity, the value functions, choice probabilities and owner-
ship transition probability matrices are indexed by y similar to the way they were indexed
by 7 in the time invariant case. Let g, denote the ownership distribution conditional on ¥,
which we again define similarly to (20) as a proper stochastic vector in R7%*1. Tts typical
element gjq, is the share of households who own car type j of age a while in income state
Y.

Continuing with the analogy, let ED, (P, g,) denote the excess demand function for a
household whose income state is y. Though y changes over time for different households,
there is a stationary cross-sectional distribution of y given by the invariant density A(y)
defined above, and there is a stationary joint density of car ownership states and y given
by ¢,(P). So, to extend the Definition D1 for stationary equilibrium to the economy with

time variant household types, we modify the market clearing condition to

| EDAPa) My =0, (36)

which is still the system of J(a — 1) non-linear equations in prices and ownership dis-
tribution. However the latter is pinpointed by the modified stationarity condition that
takes into account the stochastic evolution of types according to the transition density
p(y'ly), namely

Gy = /y a2y (P)Qyp (Y [y)My)dy. (37)

Theorem 5. The stationary equilibrium in the economy with time varying household

23Gince these extensions are straightforward we omit the Bellman equations to save space.
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types given by an exogenous ergodic Markov process {y,} € Y with transition density
p(Y'ly) and stationary distribution \(y), defined in Definition D1, exists. In equilibrium
the joint ownership-type distribution is given by the Ay) and q, that satisfy the the sta-
tionarity condition (37), and the equilibrium prices P satisfy the market clearing condition

(36). Steady flow property of the equilibrium continues to hold.

This proof is also very similar to the proof of Theorem 4 and will be omitted for
brevity, though a full detailed proof is available on request. It is also possible to layer
combinations of time-invariant and time-varying heterogeneity and these cases can be
handled by combining Theorems 4 and 5. For example we could have a finite number
of types 7 with different transition densities p,(y'|y). We can extend the equilibrium
conditions by integrating excess demand ED,,(P, g.,) over all y for each type 7 and then
sum over types. This requires computing stationary ownership distributions ¢,, for each
(7,y) combination using a 7-specific analogue of (37), and stationary distributions A, for
each time invariant type 7. We can then substitute these invariant distributions (taken
as smooth implicit functions of P) into the formula for excess demand ED., (P, g.,), and
compute the equilibrium prices by searching for a vector P that solves the system of

nonlinear equations

ED(P.) =3 . /y ED.y(P,gry) M\ (y)dy = 0 (33)

formed by integrating excess demand over all time-varying and invariant household types.

4.3 Illustrative example: sorting in stationary flow equilibrium

Figure 2 illustrates the stationary flow equilibrium in a heterogeneous agent economy
with two permanent types of households who differ in their marginal utility of money,
e = 0.3 > 0.1 = py. The households who have a lower marginal utility of money are
the rich households in this economy. The utility of the outside good is set to 0 for both
households types. We assume this economy has 50% rich and 50% poor households.

In this example we collapse the GEV structure of random components to a simple
extreme value EV1 distribution with common scale parameter ¢ = 1. Consumers also
have the same discount factor 8 = .95 and the utility function is u(a) = 10 — 0.5a. There

is a single car make/model J = 1 traded in this economy, with new car price P = 200
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Figure 2: Equilibrium price functions in a two household type economy

(a) Low transaction costs (b) High transaction costs
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Notes: Both panels show the equilibrium price functions of the heterogeneous agent economy as well as homoge-

neous economies without transaction costs where all households are of either type.

and scrap value P = 1.

We also illustrate the effect of transactions costs by computing an equilibrium with
buyer side transactions costs of T,(P,d) = 0 and Ts(P,a) = 0 (low transaction cost), as
well as an equilibrium with high transactions costs, T,(P, d) = 10.

It seems reasonable to conjecture that in equilibrium a hand-me-down chain will
emerge in which the rich are more likely to buy brand new cars whereas the poor house-
holds will buy the used cars previously owned by the rich. However it is not clear a prior:
what relative fractions of the two types of households will select into what fractions of
the new and used cars, and which fraction choose to have no car at all. These questions
and the effect of transaction costs on holdings can be answered by numerically computing
the equilibrium prices and ownership distributions.

Figures 2 and 3, plots prices and holdings for two equilibria corresponding to the low
and high transactions cost cases, respectively. For comparison, we also plot the prices
that arise in the economies with single household types, one where all households have
high marginal utility of money, and one where it is low. When transactions cost are high,
equilibrium prices are closer to prices in the one-type economy where all consumers are
rich because many poor consumers are now driven out of the market. Moreover, cars
are scrapped earlier. Thus the higher transactions costs limits the gains from trade and

partially “kills off” the market for used cars.
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Figure 3: Equilibrium ownership in a two household type economy

(a) Low transaction costs (b) High transaction costs
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Notes: The total area of the bars in each panel adds up to one, presenting both the distribution of households
over car ages, and the share of outside good. There are equal numbers of households of each type. Both panels
show the post-trade ownership distributions. Since the density in the no-car state is much higher than each

car-by-age category, we have split the no-car bar into several bars placed horizontally next to each other.

There is clear evidence of sorting of households into the ages of the car in panel (a) of
Figure 3, which shows the post-trade ownership distribution ¢€2(P). The rich households
hold the newer cars and in particular are much more likely to buy new cars than the
poor households. In addition, the fraction of poor households who do not to own a car
is much higher. Overall, we see that poor households are driven out of the market to a
much larger extent than the rich households when transactions costs increase.

These findings confirm our conjecture that a “hand-me-down-chain” arises endoge-
nously in equilibrium, created by type-specific specialization in holdings that facilitates
gains from trade between the two types of households. The rich households buy brand
new cars and hold them for several years and then sell them to poor households who also
hold them for several years, trading the cars over a succession of poor owners until the
car is scrapped. Thus, in this example the rich households are net suppliers of older cars,
and the poor households are net demanders of older cars. Most of the trade between rich
and poor households occurs for cars of roughly middle ages: the rich supply their middle

aged cars to the poor households, and market clears in aggregate, but not for each type.
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5 Identification and Structural Estimation

We have introduced a dynamic model of trade in automobiles that allows for rich spec-
ifications of observed and unobserved consumer heterogeneity whose equilibrium can be
rapidly computed. By embedding the equilibrium solver into other algorithms we can
therefore extend our framework in multiple directions including using the model in em-
pirical applications. In this section we develop the Doubly Nested Fized Point (DNFXP)
algorithm to implement the maximum likelihood estimator for our modelling framework.*
We also provide a discussion on model identification, including the case when the market

prices are not observed.

5.1 Maximum Likelihood Estimation

Let 6 be the vector of parameters characterizing consumer preferences, car transactions
costs and car type specific accident rates that we wish to estimate. The solution of
the model, including the equilibrium prices, quantities, and choice probabilities are then
implicit functions of the parameter vector 6.

Suppose we observe types, states, choices and accidents for a random sample of con-
sumers (households) indexed by h € {1,..., Ny} where each consumer is observed over
T}, separate time periods, which may or may not form a consecutive sequence. In other
words we may have a balanced or unbalanced panel, or even a cross section if Tj, = 1 for all
h. Denote the total number of observations Ngr = Z,Ijzl T;,. Let 13, denote the observed
type of consumer h.?® Let xj; denote the observed pre-decision state of consumer h in
period t, S0 xp = (ipe, ape) if the consumer owned a car of type iy, and age ap; at the start
of period, before making any decision about trading and similarly x;; = ¢ if the consumer
enters the period with the outside good. Let (cp, spe) € C(zp) denote the consumer’s
decision from the choice set C(-) given in equation (1) where ¢;; denotes the choice of
whether to keep, trade or purge the current car and s;; denotes the voluntary scrappage
decision which is only relevant when x,; # ¢ and ¢,; # . Finally, let z,; € {0,1} denote

whether household h experienced a total loss accident leading to an exogenous scrappage

24 Another natural extension of our framework is to include the equilibrium in the primary market of automo-
biles. However, given our empirical application in Section 6 to the Danish automobile market where all new cars
are imported, we defer this extension to a future paper.

25We focus on the case of time invariant consumer heterogeneity. The cases of time varying and mixed consumer
heterogeneity are straightforward generalizations.
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of their car during period t. Note that given the structure of the state transitions, the
next period state ;41 is fully determined by (zp, Che, Sht, 2nt), and we can treat it as
deterministic function of the current state and decision, zp1 = f(Tne, Cht, 2ne). This
implies for any decision involving owning a car, ¢, # 9, knowledge of (xp, cpe) enables
us to predict the probability of zj,,1 in terms of the accident probability a(cp), so we

can write a conditional density for (z.11, Sp) given xp; as

7T(%t+1|$ht, Th)Ws(Sht|$ht,Th) = 7T<f(=77ht; Cht, th)|$ht, Th)Ws(Sht|$ht,Th) =

[[{zht = 1}a(en) + H{zn = 0}(1 — a(cht))] IL;, (cnelne) Iy, (Snelane).  (39)

The probability 7(xy1|zs, 7) is simply an element of the matrix . (P)Q from the equi-
librium condition (29) of Theorem 2 and the accident probabilities «a(-) are those used
in the definition of the () matrix in equation (27).2° The conditional choice probability
I (cp|zne) s (Spe|ne ) on the right hand side of equation (39) are just the choice probability
given in equations (13) and (18) of Section 3.3.

The (average) log-likelihood collects contributions from state transitions and the

choice probabilities similar to Rust (1987):

Ly ZZ log (Tht|Tpi— 1,Th,9)) + log (Ws(Sht|96ht 1;Th79))}7 (40)

H T,
N
HT 1~

1t=1
where the first term of Ly (f) represents information from trading decisions, while the
second term reflects information from scrappage decisions. We show below in Theorem 6
that the information on scrappage decisions is crucial for identification the key marginal
utility of money parameters {p,} as well as transactions costs, {Ts(i,a),Ty(i,a)} even
when secondary prices P, are unobserved by econometrician. Thus, information on
scrappage of cars is key to the identification of the model.

In applications with large sample size we can speed up the computation of the likeli-
hood by avoiding the summation over h and ¢ in (40), and instead use counts of similar ob-
servations. Let N/, = Zthl ZtTil I{azht =2, o =2, = T} denote the total number

of type 7 consumers in state  who transit to state 2. We have Ny =>"_>" > Nyyr.

25Note that if cpy = @, then the accident probability is not relevant and T(Thtt1|The)Ts(Sne|zne) reduces to
I(cht|xne) s (She|zne), and if zpe = ¢ or ¢y = K, the scrappage indicator is not relevant, so we can define
ws(snt|Tne) = 1 in such cases.

36



Similarly, let Ny, = ZhH:1 ZtTil I{sp = s,xp, = x, 7, = T} be the total number of ob-
servations for scrappage choice s € {0, 15}. In our empirical application to Denmark,
H is the total number of households, and via using repeated cross sections of the entire
population over 7' = 12 years, we end up with Ngp = 39 million observations. By the

ergodic Law of Large Numbers we have with probability 1

SXT

=72 |z, 7)¢ (z)fr, lim N = 75(s|z, 7)qr () fr. (41)

lim Notar
NygT—+00 NHT

NygT—ro0 NHT

Thus, the large sample limit of the cell-based likelihood function Ly (6) is

NHT—>OO

SN D log (n(@|a, 7, 0) (2 v, 7) + D log (ma(sla, 7, 0)) mo(s|2) | gr(2) fr, (42)

s

so our data can be condensed into a much smaller number of empirical transition proba-
bilities and market shares, {m (2’|, 7), 75(s|z, T), ¢-(z), f+ }, along with the consumer type
distribution f;, in the population. It is far faster to evaluate the likelihood in equation (42)
than summing over 39 million individual observations as in equation (40).

In our empirical application in Section 6 we observe scrappage outcomes but not vol-
untary scrappage decisions because we do not observe accidents, including ones that lead
to a forced scrappage of a vehicle. This implies that we cannot always observe the house-
hold’s pre-decision state z;; needed to evaluate the full information likelihood Ly (6) given
in equation (40) above. Nevertheless we show in Appendix C that we can still identify
the accident probabilities «(i,a) for different car types and ages even when accidents
are unobserved. We do this via a marginal likelihood function that integrates out with
respect to accidents by calculating the probability of a scrappage outcome as the sum of
two probabilities: 1) “exogenous scrappages” due to accidents that occur with probabil-
ity a(i,a), and 2) “endogenous scrappages” due to a voluntary choice by the owner that
occur with probability (1 — a(i, a))IL, (147, a). Technically the likelihood function can be
expressed using a transition probability for the post-decision state augmented with the
scrappage outcome which we denote by (;, where (; = 1 if the car owned prior to trading
is scrapped (either voluntarily or exogenously due to an accident), and ¢, = 0 if the car x;

was not scrapped. Define d; as the vector consisting of the post-decision state ¢; = (jy, dy)
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(i.e. the car the consumer has after the instantaneous trading decision) and the scrappage
outcome (; on the previous car x; = (i, a;) (i.e. the pre-decision state). Thus we have
d; = (¢t, () which equals 6; = (jy, dy, ¢;) if the consumer traded car z; = (i, a;) for car
¢t = (Ji, dy) at time ¢ and in our Danish data, d; is always observed.?” In Appendix C we
derive a transition probability m(d'|d, 7, 0) and show that a likelihood function using these
observed transition probabilities succeeds in identifying all parameters 6. This likelihood
can also be written in both standard and cell forms as in equations (40) and (42).

Note that the formulation of the likelihood function above fully imposes the equilib-
rium constraints and rely on the equilibrium prices P(#) implied by the model rather
than observed prices at the secondary market. As show below, conditional on the model
being well specified, these equilibrium constraints allow us to identify the structural pa-
rameters # even when secondary prices P are unobserved. We can thus consistently
estimate the true parameter 6* using the maximum likelihood estimator 6 defined by

0y = arg maxgeo Ly (6).2

5.2 Doubly nested fixed point (DNFXP) algorithm

To implement 6 we adopt a full solution approach similar to the Nested Fixed Point
(NFXP) algorithm in Rust (1987), but where the additional equilibrium constraints re-
quire an additional nested loop to compute equilibrium prices. We refer to this as the
doubly nested fized point or DNFXP algorithm: while searching over the parameters
space, DNFXP invokes the solution algorithm described in Sections 3 and 4 to com-
pute the equilibrium prices, quantities, and choice probabilities necessary to compute the
likelihood function. This requires an additional nested loop for calculation of the equilib-
rium prices P after the expected value functions EV,(P,#) and the corresponding choice
probabilities are found as a result of solving consumers’ dynamic programming problems.

While this seems like a daunting computational task, our extensive use of gradient

based methods and principles of back propagation to compute them, makes it fast and

2TIf the pre-decision state is x; = ¢ or the observed decision ¢; = & then the scrappage outcome is not relevant,
and §; simply equals x; in such cases.

2#When prices P are fully observed we do maximum likelihood subject to the constraint that P(f) = P
which results in a more efficient estimator due to the imposition of the constraint. However, even in situations
where prices P are actually observed, researchers may not want to estimate subject to this constraint but rather
rely on the model’s ability to identify equilibrium prices using only micro data on car ownership transitions.
The predicted prices P(é) constitute some of the strong overidentifying restrictions of the model, so a Wald or
Likelihood Ratio test of the hypothesis Ho : P(0*) = P is likely to be a powerful test of the combined hypotheses

of stationarity, individual optimality, and market equilibrium.

38



robust. For example, computing the gradient VyL(0) of the likelihood function incorpo-
rates through the chain rules of calculus the computed gradient of the equilibrium prices
VoP(0), which in term incorporates VyEV,(P,0). The gradients needed at the outer
loop (likelihood maximization) of the algorithms are produced as by-products of solving
the model at the inner loops (equilibrium and Bellman optimality).?? This enables us
to use fast implementations of quasi-Newton algorithms such as the BHHH algorithm of
Berndt, Hall, Hall and Hausman (1974) with accurate analytic gradients, without the
need to compute the Hessian of L(#) which is even more tedious. Together, this makes

DNFXP feasible even on ordinary laptop computers.

5.3 Model Identification

In this section we establish the identification of the structural parameters 6 of our equi-
librium model under the most unrestricted parametric specification. Following the de-
scription in Sections 3 and 4, under the least restriction on the parameters of the model
vector 6 is composed of 5 and {u,(i,a), ur, Ty(i,a), Ts(i,a)}, for all a € {0,...,a — 1},
ie{l,...,J}, 7€{l,...,N,}, and thus has 1 +2J(a — 1) + N,(Ja + 1) elements.*

In a theoretical analysis of identification the choice probabilities {m(2'|x, 7), 7s(s|z, 7)}
for each observed consumer type 7 and the implied market shares ¢,(x) as well as type
proportions f, as treated as known. The choice probabilities constitute the reduced-form
objects of the model. Subject to an aribtrary location and scale normalization on utilities,
the model is identified if only one vector of structural parameters 6* implies the reduced
form probabilities.

A necessary condition for identification is that we have more observed “moments”
(i.e. probabilities) than parameters being estimated. It is straightforward to show that
we cannot identify the structural parameters using the aggregate market share data alone.
This is simply due to the fact that such data provides only Ja independent moments,
but even after a location and scale normalization, the unrestricted specification for 6 has

far more parameters. Using data on consumer type specific market shares may suffice

29Because we extensively use the chain rule of calculus, our framework is compatible with many different spec-
ifications of preferences and can easily accommodate additional structural parameters. The computational cost
of adding parameters is small — there is practically no additional time spent to compute additional derivatives,
and so the run time for a single evaluation of likelihood function and its gradient hardly changes.

30The accident probabilities {a(i,a)} can also be treated as structural parameters as in our empirical application
in Section 6.

39



depending on particular application. However, we have far more data than market shares
in ownership transitions which constitute a total of Ja(Ja + 1) independent moments
for each of the consumer types, and an additional J(a — 1) moments for the age-specific
scrappage probabilities for each car type. Thus with microdata or cell count data as
described in Section 5.1 we typically have vastly many more moments than structural
parameters in our model.?!

There are two key reasons why we are able to identify u, even when secondary prices
P are unobserved. First, we do observe prices of new cars P; as well as scrap values P,
for each make/model. Second, the quasi-linear structure of preferences together with the
assumption that the market is in equilibrium imposes strong “cross equation restrictions”
on car ownership transitions, holdings, and prices. In particular, P, () is a nonlinear
function of model parameters, so the price terms p,P;,(0) and the car utilities wu,(j,a)
will not be collinear. Intuitively, we can identify u, by observing where consumers en-
dogenously “locate” in the “hand-me-down-chain” in the car market — richer consumers
(those with lower p,) are more likely to buy newer cars and more expensive brands,
whereas poorer consumers are more likely to buy older cars and less expensive brands.

Formally, identification of {1} (up to a scale normalization) and transactions costs under

additional identifying assumption is provided by the following theorem .

Theorem 6. Provided that the market is in equilibrium and under the assumptions mostly
laid out in Sections 3 and 4, namely
(a) Random components € of the utilities follow the GEV distribution,
(b) Prices of new cars P; and scrap values P; are observed for each car make/model i,
(¢) Transaction cost of the new car buyer as well as transaction costs on the seller
side for alli € {1,...,J}, a € {1,...,a} are included into the prices, T,(i,0) =
Ts(i,a) =0,
the equilibrium prices Py, and transactions costs Ty(i, a) are point identified for all tradable
carsi € {1,...,J}, a € {1...,a — 1}, and the marginal utilities of money p, are point

identified (up to a scale) for all consumer types T € {1,...,N,}.

Proof. See Appendix A.4 (page 66). ]

3In the empirical analysis in Section 6 we allow for N, = 8 (observed) household types, J = 4 car types,
and assume a = 25. This results in 1001 parameters in the unrestricted parameterization, which can not be
estimated using only 96 independent market shares, or even 768 type-specific market shares. The total number
of “moments” in the ownership state transitions is, however, 80800. Nevertheless, as described in Section 6 we
actually use a parsimonious restricted specification with only 131 parameters.
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The proof of Theorem 6 relies on the inversion theorem of Hotz and Miller (1993),
namely the version of it for the GEV distributed shocks in Lemma 2 in Arcidiacono and
Miller (2011). We can then treat the choice specific value function differences as data,
and using the quasi-linear structure of the utility function are able to pick out its different
parts by considering value contrasts for various pairs of choices. Under the assumption
[c] that the seller side costs are “passed on” to the buyer all the monetary components
in consumer preferences are identified.??

Once all the monetary components in consumer preferences are identified per The-
orem 6, our model reverts to the standard dynamic discrete choice setting where the
remaining structural parameters {f, u.(i,a), }, a € {0,...,a—1},i € {1,...,J} can be
non-parametrically identified under the standard normalization and exclusion restrictions.
In particular, proposition 2 in (Magnac and Thesmar, 2002) establishes identification of
the utilities u, (7, a) assuming the discount factor /5 is known, and after location normal-
ization by adding constants to all utilities so that u.(¢) + Sv.(g,0) = 0.

To identify the discount factor 8 we may resort to the exclusion restrictions shown in
(Abbring and Daljord, 2020) to be sufficient for identification of the discount factor in
the dynamic discrete choice models. An example of the appropriate exclusion restriction
is the flatness of the utility function u(i, a) for older cars such as u,(i,a—2) = u,(i,a—1)
for some 7. Results of Abbring and Daljord (2020) then establish identification of the
discount factor.3?

Even though preferences are only identified up an arbitrary location and scale nor-
malization, this can be sufficient to use the model to make counterfactual predictions of
a wide number of policy changes, including changes to car taxation policy as we show

in our analysis in section 6.3* However we acknowledge that there are some counterfac-

32There are other types of identifying restrictions. In our empirical application in Section 6 we are able to
identify transaction costs of both buyers and sellers even when accidents and secondary prices are unobserved
under including driving and additional functional form restrictions on utilities.

33Theorem 6 does not pretend to provide the weakest possible conditions for identification, and identification
can be established using alternative types of restrictions and incorporating other types of data not contemplated
in that result. For example, in the model we actually estimate in section 6 we also use data on driving show how
to extend the model to allow for driving. Since the marginal utility parameters p- also affect observed driving,
this is an additional source of identification. Identification can be assisted by placing stronger restrictions on
households’ utilities, {u-(i,a)} and in section 6 we assume these functions are quadratic in car age. With these
additional restrictions (which are probably much stronger than absolutely necessary), we can identify all of the
buyer side transactions costs (again assuming 7(i,a) = 0 as in Theorem 6) and also the accident probabilities
{a(i,a)} even when both accidents and secondary prices P are unobserved.

34Gee Kalouptsidi, Kitamura, Lima and Souza-Rodrigues (2021) who establish conditions where counterfactual
predictions from dynamic single-agent discrete choice models are identified even though agent preferences are
only partially identified.
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tual predictions that cannot be identified without other information. For example, an
upgrade to public transportation infrastructure would change the utility of the outside
good, u,(@), but we are only able to identify how consumers evaluate the utility of cars
relative to the outside good. We would need independent information on the incremental
willingness to pay for an upgrade to public transport infrastructure in order to make

counterfactual predictions of these sorts of policy changes.

5.4 Alternative estimation approaches

One drawback of the MLE approach to estimation is the requirement of car ownership
transition data rather than the typical market share data that is commonly used to esti-
mate vehicle choice models. In principle, we could use McFadden’s method of simulated
moments (MSM) (McFadden, 1989) to match the market shares in the outer loop of the
DNFXP algorithm. To this extent we could use the stationary ownership distribution
q(0) or ¢, (0) implied by the model equilibrium to match the observed aggregate or con-
sumer type specific market shares. However, as discussed in the previous section market
share data alone are generally insufficient to identify the structural parameters without
stronger functional form assumptions or utilizing additional data.

It follows from the identification argument in previous section that our method can
estimate models with agnostic and flexible specifications of consumer preferences. More-
over, DNFXP approach allows for direct modelling of price endogeneity by capturing the
functional dependence of equilibrium prices on heterogeneous consumer preferences for
the observed and unobserved car characteristics. This contrasts our method from the
well-known BLP method (Berry, Levinsohn and Pakes, 1995) which numerically inverts
the mapping from expected discounted utility of different trading decisions (i, a) to its
aggregate market shares ¢;, and then uses the method of instrumental variables to regress
the inverted market shares to the prices P which are endogenous right hand side variables.
In contrast, we offer an instrument-free estimation approach.

As we shall see in the next section, our model delivers predictions of secondary market
prices and accident rates that are quite reasonable. Thus, direct full information maxi-

mum likelihood estimation with nested numerical solution of the equilibrium for each trial

35We are not the first to use an instrument-free full solution likelihood-based approach to identify and estimate
the structural parameters. Yang, Chen and Allenby (2003) used a Bayesian approach for inference of the structural
parameters of a static equilibrium model of simultaneous supply and demand.
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value of the parameter vector € enables us to overcome serious econometric challenges

that incomplete estimation approaches such as BLP are unable to deal with.

6 Analysis of Danish Car Tax Policy

In this section we use the DNFXP maximum likelihood estimator to structurally estimate
a version of our model with 8 types of households and 4 different car types of 25 ages
using a data set that follows the car holdings of all Danish households from 1997 to 2008
provided by Statistics Denmark. This data set contains nearly 39 million observations,
yet we show that the 131 structural parameters of the model can be estimated in a matter
of minutes using an ordinary laptop computer. We then show how the estimated model
can be used to make counterfactual predictions that may be crucial for analysis of car
tax policy in Denmark. We also extend the model by incorporating driving. This also
enables us to study the effects of additional taxes such as fuel taxes and account for
environmental and congestion impacts of hypothetical policy changes. We show that it
is possible to raise tax revenue and consumer surplus while reducing CO, emissions by
lowering registration taxes and raising fuel taxes.

We simulate the effects of reforms similar to ones that have been under consideration
in Denmark, which shift taxation from the purchase of new cars to the use of cars by
increasing the fuel tax. We compare the predictions from our estimated equilibrium
model to those obtained from a model that does not account for equilibrium in the
used car market, and instead assumes a proportional change in prices of new and used
cars. Predictions that fail to account for equilibrium responses are unable to accurately
capture behavioral responses to this policy change. They overestimate the change in
fleet composition compared to an equilibrium analysis where used car prices, scrappage
rates, and holdings of cars respond endogenously. Paradoxically, predictions from non-

equilibrium models are too extreme, overpredicting tax revenue gains, for example.

36We refer to BLP as “incomplete” in the sense that it focuses on estimation of demand-side parameters (e.g.
preferences for different cars) while avoiding nested numerical solution for equilibrium prices in order to directly
model this endogeneity.
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6.1 Incorporating Driving

The primary reason to own a car is to drive it and thus far we have ignored this important
aspect of car ownership. Let x denote the number of kilometers a consumer chooses to
travel in a period, and let p; denote the price per kilometer traveled for a car of type
j. This equals the price of fuel (e.g. kroner per liter) divided by the car’s fuel efficiency
(kilometers per liter of fuel) for car type j.

Let u.(j,a,z) be the utility a consumer of type 7 obtains from owning a car of type
j and age a and driving it (on average) for x kilometers during the period. We make
a simplifying assumption that the probability of an accident and other physical dete-
rioration in an automobile is independent of driving, z, and is instead only a function
of car type j and car age a. The benefit of this assumption is that driving becomes
a static sub-problem of the consumer’s overall dynamic trading problem. The optimal
amount of driving x,(j, a, p;) then simply maximizes the driving utility net of monetary
cost, u,(j,a, x) — prxp;. Substituting z.(j, a, p;) back into the utility function u.(j, a, z)
we obtain the indirect utility u.(j,a,p;) for owning a car of age a that incorporates the
individual’s optimal choice of driving. Assuming that p; is time-invariant, the resulting
model falls within the specification of Section 3.

To allow for discrepancies between the theoretical optimal amount of driving and
actual data on kilometers traveled by different cars between (bi-annual) inspections in
Denmark, we treat x,(j,a,p;) as planned driving by the consumer at the start of each
period. Actual driving is subject to ex post unexpected events during the period that
cannot be predicted exactly. We represent by ( the net ex post effect of these unexpected
driving needs on the marginal utility of driving, resulting in an ez post utility specification

of the following form

u7<j7 a,zx, C) = 1/}7'<j7 (I) + (%—(j, a) =+ C)I - %12 — MUrP;T, %—(j, CL) = Yr,5,0 + Vr,j 1, (43)

where the first component does not depend on x and can be considered as the utility
of owning a car apart from driving it, and therefore only affects trading behavior. We
assume that . (7, a) is a quadratic in the age of the car to fit the overall market shares

across car types and ages, so we have 1, (j,a) = ¥, jo + ¥ j1a + ¥, 20>
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The optimal ex post level of driving z.(j, a, p;, () implied by this structure is:

xT(j? a7pj7 C) = ¢Tld |: - ,U/‘rpj + 77—7j70 + ’}/T»jvla + C] : (44)

Note that conditional on type-specific coefficient ¢, ;, the parameters in (44) can be
estimated by regressing the observed kilometers traveled to the cost of driving, household
and vehicle characteristics. However, the regression only partially identifies a subset of
structural parameters as ratios involving the parameter ¢, ;, the coefficient governing the
level of diminishing marginal utility from driving.3”

When we substitute the expression for optimal ex post driving (44) back into the utility
function (43) and take expectations over the ex post shocks ¢ we obtain a specification
for the ex ante indirect utility of car ownership that is a quadratic in age. By a slight
redefinition, the parameters (v, o, V7.1, Vrj2) also subsume the first and second moments
of the unobserved ex post shock to utility ¢. Thus, besides the marginal utility of money
parameter u., there are a total of 6 unknown parameters for each consumer type 7
and car type j, which are 0. ; = (Vrj0, ¥rj1, ¥rj2, Vrj.0, Vrj1s érj)- In Appendix D we
show that the 6 parameters in 0. ; are just-identified in terms of the 6 corresponding
“semi-reduced-form” parameters, 3 for the linear driving equation, and 3 for the ez ante
expected indirect utility of owning car (j,a) which is a quadratric in a after taking
expectations of the ex post preference shock ¢: E{u.(j,a,z(j,a,p;j,C))} = trjo+urjia+
u,j2a*. This implies that we can estimate the model in two steps: first we estimate
separate linear driving regressions for each (7,7) combination to identify the 3 ratios
(—pr/PrjsVrjo/ Prjs Vrja/Prj).- Then we use the DNFXP algorithm to estimate and
identify the 4 parameters (fi, u- jo, Urj1, Urj2) of the implied quadratic expected indirect
utility function. Using these 7 estimated parameters, Appendix D shows that we can solve
for all 7 of the structural parameters (tr, ¥r .0, ¥rj1, Yrj2, Vrj.0s Yrid, Prj)- 1t is critical
to fully identify all the underlying structural parameters in order to make counterfactual
predictions involving changes in the fuel price paid by consumers, p, which in turn changes

the per kilometer cost of driving, p;, of the different types of cars j € {1,...,J}.

3"We ignore the restriction x(j,a,pj,¢) > 0 which implies that ¢ must be a truncated normal distribution.
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6.2 Estimation Results and Model Fit

Though there are hundreds of different makes and models of cars sold in Denmark, for
this analysis we aggregated them into 4 car types differentiated by their fuel economy
and pollution levels (“green” for more fuel efficient, environmentally friendly cars and
“brown” for others), and based on car weight (“heavy” versus “light”). We divided
Danish households into 8 groups 7 depending on whether they were a) singles or couples,
b) whether the distance to work was short or long, and ¢) whether the household was
rich or poor. The precise criteria for defining these groups are detailed in Appendix E.

We estimated a linear specification for preferences including driving as discussed in the
previous section. Household preferences for cars decrease with age but at a diminishing
rate, and there is heterogeneity in preferences for the different types of cars. We also
estimated household-specific quasi-linear price sensitivity parameters pu, for each of the 8
types 7. By dividing the estimated coefficient u, ;o for household 7’s utility of a new car
of type j by p,, we obtain a measure of willingness to pay for one period’s use of a new
car in Danish kroner. For example we estimate that a rich couple with low work distance
is willing to pay (e.g. rent for one year) a new light brown car for 36,704 DKK (or about
US$5,580) compared to 32,682 DKK for the corresponding poor household. In general,
we find that based on the revealed choices: 1) rich households are willing to pay more
for any type of car compared to poor households, 2) all households preferred the heavy
cars to the light ones and brown cars to green ones resulting in the following preference
ordering: heavy brown > heavy green > light brown > light green, 3) willingness to pay
for cars by high work distance households exceeds that of low work distance ones, and 4)
couples generally have higher willingness to pay for cars than singles. Given that there
are a total of 131 parameters in the model we refer the reader to Appendix E for details
on the maximum likelihood parameter estimates and standard errors.

The estimated model also has reasonable implications for driving (Appendix Table 4):
households with high work distances drive much more than those with low, and more so
for the rich. The estimated model implies fuel price elasticities between -0.10 and -0.60
across households. This is relatively close to Gillingham and Munk-Nielsen (2019), who
find an average elasticity of -0.30 using a wide array of regression specifications.

The estimated equilibrium model provides a good fit to the observed distribution of car

holdings and successfully captures key features of Danish households: 1) poor households
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are significantly more likely not to own a car than rich ones, 2) couples are more likely
to own cars than singles, and 3) high work distance households are relatively more likely
to own cars than those with low work distance, 4) a large fraction of households who
are not car owners, 40%. The latter is in part due to the excellent public transport
infrastructure and the widespread use of bicycles in Denmark, but also due to the high
taxation of cars that we will analyze in more detail in the next section. Figure 4 shows
how our model captures the post-trade age distribution of holdings of different cars by
different households, including the “hand-me-down-chain” from rich to poor consumers.
For example notice that for low work distance singles (the dark blue and red regions
at the bottom of the bar graphs) the rich households (colored red) are relatively more
concentrated in holding newer cars of each type whereas the poor households are more
concentrated in holding older cars.

As we noted in section 5.1, our maximum likelihood estimation does not attempt
to directly fit the holdings distributions, which we previously denoted by ¢, for each
household type 7. Since Figure 4 plots the actual and predicted post-trade ownership
distribution, ¢Q2(P), it also involves a comparison of the implied stationary distribution
from our model, qT(é), to the non-parametric estimates ¢, from the data. Though our
model slightly underpredicts holdings of new light cars and overpredicts holdings of new
heavy cars, overall we think the model provides a remarkably good overall fit to over 800
non-targeted probabilities shown in figure 4 using a fairly parsimonious model with 131
parameters.®®

As we noted above, the Danish register data contain information on nearly 80,000 car
ownership transition probabilities, so the next figures provide some information on the
model’s ability to fit these transitions. Figure 5 illustrates the model’s ability to capture
the probability of cars purchases as well as the probability of keeping existing car. The
left panel of Figure 5 plots the conditional probability that households purchase cars of
a given age. The model closely tracks the observed purchase patterns at the aggregate
level: households are more likely to buy a new car rather than any of the used ones and

purchase probabilities declines as cars approaches the scrap age. When comparing these

purchase probabilities for each of the 8 household types (results not shown), the model

38There are relatively few cars that are more than 20 years old in our data set and due to measurement issues
relating to the oldest cars discussed in Appendix E we eliminated cars over 22 years old from our estimation
sample. Thus the histograms for the data in figure 4 are truncated at age 22.
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Figure 4: Actual and predicted holdings, by household type, car type and car age

(a) Actual holdings (b) Predicted holdings

I HWD, S, Rich
IHWD, S, Poor
EHWD, C, Rich
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I WD, S, Rich
[ILWD, S, Poor
ENLWD, C, Rich
i I LWD, C, Poor

Fraction of population (%)

Car age LB LG HB HG No car
Car age

Note: The graphs show the fraction of the population holding each car-age combination as well as
the outside good. For the outside good, we have opted to split the bars and put them next to each
other since otherwise, that option would dominate the scale of the y axis. The abbreviations are: LB
= light brown, LG = light green, HB = heavy brown, HG = heavy green. Within each of the four

car types, car ages go from 0 to 24.

also closely tracks observed purchase probabilities and mimics the overall pattern from
Figure 4 that rich, couple, high work distance households are the types most likely to
buy a newer and larger (more expensive) cars.

The right panel of Figure 5 focuses on the 60% of Danish households that do own
cars, and plots the conditional probability of keeping their existing as function of its age.
The model is generally able to match that the overall level of probability of keeping a
car, but also reveals an aspect of the data that our model is unable to capture well: we
see that in the data, the probability of keeping a car is very high in the first couple of
years and the gradually falls with the age of the existing car whereas our model predicts
only a more modest decrease until it drops around age 15.

We conclude our presentation of the estimation results with Figure 6, which illustrate
the model’s predictions of quantities that we do not directly observe in our data set from
Statistics Denmark. As we noted, our data allows us to observe scrappage of cars but not
directly accidents leading to scrappage since another source of scrappages are voluntary
scrappages by households, such as cars that are still drivable but may require expensive
repairs to enable them to pass safety checks that a required before they can be sold to
another household. As we described in section 5.1 we are able to identify and estimate
accident probabilities using our structural estimation approach even though we do not

observe accidents. The estimated parameters shown in Table 5 implies that accidents of
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Figure 5: Actual and predicted probability of keep and purchase

(a) Probability of purchase

(b) Probability of keeping by car type
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the light cars are generally higher than the heavy ones, and accident rates rise quickly
with age after cars are 15 years old, but are negligible when cars are new.

The left hand panel of Figure 6 displays the overall probability that a car is scrapped
by the age and type of the car. We do directly observe when scrappages occur in the
Danish Register Data so in this graph we can compare the model predictions (red lines)
to the data (blue lines). Here we see the curious “zig-zag” pattern in scrappage rates that
we noted in the introduction: Danish cars are much more likely to be scrapped at even
ages than odd ages. We have verified that this effect is real and is not an artifact of how
and when scrappages are recorded. It is due to the very strict biannual car inspections
in Denmark that occur at even ages once cars are 4 years old or older. If the inspection
reveals mechanical, safety or emissions problems, the owner is required to repair them in
order to continue driving the car. We believe that Danes find these costs to be onerous
and thus they are more likely to scrap rather then keep or sell their cars if they have
problems when they are sufficiently old. We capture this effect in our model by including
an even age dummy in the utilty of car ownership (skipping a = 2). The estimation results
reveal big negative estimated coefficients for these dummy variables, with an estimated
disutility that is typically 15% to 50% as large as the estimated single period utility the
household obtains from owning a brand new car of the same type.

Finally, the right hand panel of Figure 6 shows the estimated secondary prices of
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Figure 6: Zig-Zag Patterns in Scrappage and Predicted Equilibrium Prices

(a) Scrappage rates: data (blue) vs model (red) (b) Predicted secondary prices
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Note: Panel (a) shows the fit of the scrappage rates for each car and age (averaged over households

weighted by the equilibrium ownership distribution), and panel (b) shows the equilibrium prices.

the 4 types of cars in our model. As we noted in section 5.1, even though we do not
directly observe these prices, we can compute them for any trial value of the structural
parameters, and use the substantial number of other moments in the data to identify
both the structural parameters 6 and the implied secondary prices, P;,(#) for all four
car types i and car ages a.> We firstly note that the rate of decline of our used car
prices is broadly consistent with external evidence. We have limited data on suggested
annual discount rates for used cars from the Danish Used Car Dealer Association, which
suggest that prices should fall by 13% per year on average. Our model solution implies
that prices fall on average 14% per year for three of the four cars, and 11% per year for
the light green car. Thus, the overall magnitude of depreciation in our results is quite
similar to the best data available.

Second, we note that the zig-zag pattern in scrappages is also present in the secondary
prices predicted by our model. The effect on secondary market prices is a natural conse-

quence of the estimated disutility our model predicts that Danish households experience

39We do observe prices of new cars, so we use the average new car prices P; of the different makes and models
in the 4 aggregate type groupings of cars as data rather than estimating these as additional parameters (see
Appendix Table 3). The observed new car prices help to “tie down” secondary prices.
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during the even aged years when their car is subject to inspection. As mentioned above,
independent evidence from the limited data we have an actual used car transactions
prices suggest that the zig-zag pattern in secondary prices that our model predicts is a

real phenomenon in Denmark.

6.3 Counterfactual Policy Analysis

In this final section we carry out counterfactual predictions using our estimated equilib-
rium model of the Danish auto market. We focus on the effects of changes in the Danish
new car (registration) tax and the fuel tax. As we noted in the introduction, Denmark has
one of the highest new car taxes in the world. The tax is progressive with a rate of 105%
of the retail price of the car in the first bracket (for the cars priced up to 81,000 DKK,
approximately equal $16,000 USD at the time, excluding VAT), and a rate of 180% of the
retail price in the second bracket. There is also a VAT of 25% applied to the wholesale
price of a new car, prior to the calculation of the additional new car registration tax.
Appendix E provides further details about car taxation policy in Denmark, which has
been subject to vigorous political debate and a few reforms in recent years.*’

In order to make the counterfactual predictions, which involve tax policy changes
that affect new car prices P; and thus used car prices P, , as well fuel prices p that
affect the price per kilometer driven for different car types, p;, we need estimates of the
“deep structural parameters” described in section 6.1 where we introduced driving into
the model. These deep parameters are 0 = (fir, {¥rj.0, Vrj1, Yrj2, Vr.j0, Vrjas Orj}) that
differ for each household type 7 where the other parameters except the marginal utility
of money g, also differ by car type j. Recall the ) parameters reflect the pure utility of
ownership (independent of any driving) for different cars whereas the v and ¢ parameters
capture the utility from driving.

Once we have identified the deep structural parameters, we can systematically vary
the registration tax rate (which affect the gross of tax new car prices P; and thus also
equilibrium secondary prices P, ,) as well as the after-tax fuel price p which affects the cost
per kilometer driven p; of the different car types j. For each alternative policy we consider,

we calculate the counterfactual equilibrium which also enables us to evaluate consumer

40After the end of our sample, the registration tax rate has been reduced across two separate reforms, in
combination with changes to the treatment of electric vehicles (which were not present during our sample period).
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welfare as well as the impact on overall tax revenues received by the Danish government.
Specifically, we analyze a proposed policy involving cutting the new car registration tax
in half, while increasing the fuel tax to offset the revenue loss from reduced new car taxes.
Intuitively, this policy shifts taxation from the purchases of cars to their usage, with the
intention to offset some of their harmful externalities. We assumed that the social cost
of carbon is US $50/ton to estimate the marginal external social costs of driving, using
results from Transport (2010) that also include negative externalities from congestion,
accidents, noise and local air pollution.*!

The overall purpose of this analysis is to illustrate the added value of using an equi-
librium model to inform car tax policy. We want to illustrate how a policy maker would
design a revenue-neutral reform that shifts taxation away from car registrations and to-
wards fuel and usage. Specifically, we want to compare a sophisticated policy maker to a
“naive” policy maker using a non-equilibrium model. As mentioned above, a naive way
of handling the used car market in a non-equilibrium framework is to assume a propor-
tional changes in used and new car prices. The baseline tax system for new cars is a
two-part linear system with a kink, after which the marginal tax rate increases. Thus,
the registration tax is progressive. We analyze a reform where both the low and high
rates are cut in half.

We assume 100% passthrough of taxes to new car prices, which is consistent with our
assumption in our estimation of perfectly elastic supply for new cars due to Denmark
being a small open economy with no automobile manufacturing. We are not aware of
any studies of passthrough in the Danish new car market, but full passthrough aligns
with some studies in the U.S. new car market, such as Sallee (2011), but differs from
others (Busse, Silva-Risso and Zettelmeyer, 2006). Assuming full passthrough to new car
prices, cutting the low and high rates in half results in new car prices falling by between
25.6% and 27.6% for the four car types. In the non-equilibrium setting, which we refer
to as naive, expected, we assume that the prices of the used cars of all vintages fall by
the same percentages relative to the baseline equilibrium. However while it is easier to

make predictions, the naive approach fails to account for the endogenous adjustment of

“!See also Winston and Yan (2021) who analyze US data and find that traffic congestion can increase the
demand for larger, less fuel efficient cars. Thus, congestion pricing, i.e. taxes or tolls that can mitigate congestion,
“could reduce the vehicle fatality rate rate, generating $25 billion in annual benefits, and coule improve vehicle
fleet fuel efficiency, generation roughly $10 billion in annual cost savings.” (p. 196).
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car trading and secondary prices to the change in fuel prices and new car prices. Thus,
we will consider the following four scenarios:

1. Baseline: the model is solved for equilibrium prices and calibrated under status
quo Danish tax policy as of 2008.

2. Naive, Expected: a naive policy maker, assuming that used-car prices will fall by
the same proportion as the corresponding new car price for each car type. That is,
the market is not in equilibrium. The policy maker raises fuel taxes until revenue
is equivalent to the baseline. We calculate individual household welfare using these
prices even though the used car market is not in equilibrium.

3. Naive, Realized: this is the equilibrium outcome that would result from the fuel
tax policy enacted by the naive policy maker above. That is, the market is in
equilibrium here and used car prices are set to equate supply and demand, but tax
revenue is not equal to the baseline.

4. Sophisticated: these are the predictions of a sophisticated policy maker who cor-
rectly predicts the endogenous equilibrium responses to tax policy changes. That
is, the used-car prices are such that the market is in equilibrium, and fuel taxes are
set so that the total tax revenue is equal to the baseline tax policy scenario.

The outcomes under the four different policy scenarios are presented in Table 1, and
the resulting car prices are in Figure 7. In the “Naive, expected” scenario, the policy
maker is guided by a naive expectation of proportional passthrough. Lowering registra-
tion taxes results in an increase in tax revenue, so in order to achieve revenue equivalence,
the policy maker increases fuel taxes from 57% of the price at the pump in the the base-
line up to 76%.%2 According to this non-equilibrium model, that should achieve revenue
equivalence at 9,391 DKK per household annually, but with a much younger car fleet
where the average car age falls from 6.5 to 3.1 years. However, the scenario “Naive,
realized” shows what will actually happen once used car prices adjust to equilibrate the
market. Firstly, we note from Figure 7 that used car prices fall by more than proportion-
ally, which correspondingly results in car ages falling by less than predicted, only to 4.3
years. In other words, the naive model predicts a much too strong movement towards

newer cars, which results in excess demand for newer cars. As a result, registration tax

42 Alternatively, the policy maker could also lower fuel taxes to achieve revenue equivalence. However, the
required reduction implies a virtual abolishment of fuel taxes, which we judge to be less realistic in practice.
Nevertheless, this illustrates the complexities in policy design with Laffer curve effects.
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Figure 7: Equilibrium prices
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Note: Each panel shows the prices for the corresponding car type where the four lines represent the

four different scenarios (see Table 1 for descriptions).

revenue crumbles, resulting in total tax revenue falling short of the intended equivalence
target from 9,391 to 7,452 DKK per household.

Instead, the column “Sophisticated” shows that the policy maker would only have to
increase fuel taxes until they make up 73% of the price at the pump if she takes into
account the endogenous responses in the used car market.

The general takeaway message is that a non-equilibrium model produces much greater
movements in new car sales, and thus in registration taxes, than what an equilibrium
model can sustain in flow equilibrium. This means that the policy maker will expect
greater effects from changes in registration taxes than what will actually come to pass.
The analysis so far has focused on comparing the decisions made under the guidance of a
non-equilibrium as opposed to our equilibrium model. If we consider first the implications
of the tax policy in the “Sophisticated” column, we note that the reform succeeds in
raising total societal welfare. This is because although consumer surplus falls slightly
from 7,364 to 5,969 DKK, driving-related externalities fall by more as total driving falls
from 10,861 to 7,580 km annually in response to the much higher cost of driving. Thus,
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Table 1: Policy Simulation Results

Naive, Naive,
Baseline expected realized Sophisticated

Policy choice variables

Registration tax (bottom rate) 1.050 0.525 0.525 0.525
Registration tax (top rate) 1.800 0.900 0.900 0.900
Fuel tax (share of pump price) 0.573 0.761 0.761 0.732
Ezogeneous prices
Price, light, brown (1000 DKK) 174.902 129.532  129.532 129.532
Price, light, green (1000 DKK) 144.551  107.532 107.532 107.532
Price, heavy, brown (1000 DKK) 299.452  214.048 214.048 214.048
Price, heavy, green (1000 DKK) 253.397  182.796 182.796 182.796
Fuel price (DKK/1) 8.322 14.885 14.885 13.243
Outcomes
Social surplus (1000 DKK) 9.382 11.281 8.439 10.203
Total tax revenue (1000 DKK) 9.391 9.391 7.452 9.391
Fuel tax revenue (1000 DKK) 4.282 5.184 4.983 6.224
Car tax revenue (1000 DKK) 5.110 4.207 2.468 3.167
Non-CO2 externalities (1000 DKK) 6.751 3.385 3.281 4.711
Externalities (1000 DKK) 7.374 3.702 3.586 5.157
Consumer surplus (1000 DKK) 7.364 5.592 4.573 5.969
CO2 (ton) 2.148 1.094 1.052 1.537
VKT (1000 km) 10.861 5.446 5.279 7.580
E(car age) 6.507 3.080 4.336 5.417
Pr(no car) 0.367 0.535 0.534 0.418

Note: In the baseline scenario the institutional parameters conform to the data for 2008. In the column
“Naive, expected”, the two rates for the new car tax are both cut in half and then fuel taxes are increased
until tax revenue is equal to the baseline. Used car prices are assumed to fall by the same percent as
new car prices (i.e. 100% passthrough from the new to used car market). In “Naive, realized”, the new
car taxes and fuel taxes are as in “Naive, expected”, but we solve for the equilibrium used car prices. In
“Sophisticated”, we change the fuel tax so that the total tax revenue is equal to the baseline, each time

solving for the used car price equilibrium.

there are clear welfare differences between revenue equivalent combinations of the two
tax rates on purchase and use.

We next consider whether there are policy options that can raise welfare without
harming tax revenue or increasing emissions. To do this, Figure 8 shows contour lines on
a plot of the registration tax against the fuel tax.*® The axes are scaled so that the point
(1,1) denotes the baseline tax levels and the shaded green area to the southeast of the
baseline levels, represent combinations of the two tax rates that result in lower emissions,

higher welfare, and higher tax revenue-a “win-win-win” situation.4

43See Appendix E and specifically, Figure 9, for the 3D graphs these contours are taken from).
4The x and y axes show the tax rates for fuel and car registrations, respectively, normalized so that the
baseline is 1. Each line represents the contour lines for one of three outcomes; that is, combinations of the two
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Notably, the baseline (current situation) is quite far from the tax revenue-maximizing
level, which has a much lower registration tax, but higher fuel tax. The welfare-maximizing
tax combinations set the registration tax to zero, instead relying solely on the fuel tax
to target externalities. The complex interaction between the two car taxes illustrates
the importance of jointly modeling the purchase and driving decisions in an equilibrium
framework, and the possibility of using such a model to optimize tax policy to meet

policymaker objectives.

Figure 8: Welfare, Revenue and Environmental Effects of Different Tax Policies
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7 Conclusion

We have introduced a computationally tractable model of equilibrium in the primary and
secondary markets for automobiles that allows for flexible specifications of preferences and
consumer heterogeneity and transactions costs. Our work was inspired by the early static

discrete choice models of equilibrium in the automobile market pioneered by Manski,

tax rates where the outcome is kept constant and equal to the value in the baseline configuration, occurring at
the point (1,1). The three outcomes are tax revenue, CO2 emissions, and social welfare (excluding the external
costs of CO2 emissions). Moving from the baseline in the direction of the origin implies an increase in all three
outcomes, although tax revenue will eventually start to decline again (because in the baseline, both tax rates are
above the top point of the Laffer curve). Four points are depicted on the graph in red: first the baseline, (1,1).
Second, the top point of the Laffer ”curve”, where overall tax revenue is maximized. And third, two points that
show the overall social welfare maximizing policies: one under a CO» price of $50/ton, and one at a higher price
of $250/ton (a price recently suggested by the Danish environmental council). Not surprisingly, a higher price
results in a higher fuel tax, but still a zero tax on car purchases.
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Sherman, and Berkovec and the subsequent efforts to extend their models to include
dynamics and transactions costs and model equilibrium price setting in the primary
market by Rust, Stolyarov, Gavazza, Lizzeri and Roketskiy, and Esteban and Shum. We
believe that our framework is promising for empirical applications and policy analysis,
and in future work we plan to further extend and apply it in a number of directions.

One of these directions is ongoing work (Gillingham, Iskhakov, Munk-Nielsen, Rust
and Schjerning, 2019) to structurally estimate an “overlapping generations” version of
our model using Danish register data to allow for a realistic counterfactual analysis of
vehicle tax reform in Denmark. Another direction is to extend the model to include
Bertrand-Nash equilibrium in the primary market for autos in addition to competitive
equilibrium in the secondary markets. Estimation of the model with the primary market
requires a triply nested version of NFXP, but the payoff is that we can use the model to
relax our assumption of 100% passthrough of new car car taxes to retail prices, as well
as use the model to predict merger counterfactuals.

Another direction would relax the assumption of stationarity and extend our defini-
tion of equilibrium to allow for macroeconomic shocks that can capture the pronounced
“waves” often found in the age distribution of vehicles (Adda and Cooper, 2000). We are
comparing different solution concepts in terms of computational tractability and empir-
ical realism, including the “temporary equilibrium” concept of Grandmont (1977), the
“sufficient statistic” approach of Krusell and Smith (1998), as well as a full blown rational
expectations equilibrium that takes into account the entire holdings distribution of cars
as a component of the “state variables” that consumers use to predict future prices as in
Cao (2016).

A very challenging extension of our model would endogenize the characteristics of
vehicles by allowing firms to invest in R&D to produce new vehicle designs. Longer-run
competition on attributes will likely require a fundamentally non-stationary framework
and raises questions of consumer expectations over future products. Very promising
headway into this sort of analysis has been done in the pioneering work of Goettler and
Gordon (2011), and it may be possible to adapt this approach into a more evolutionary
model of the automobile market. A final challenging extension would be to incorporate
asymmetric information in a more detailed treatment of the “microstructure” of trade

in the automobile market, including endogenous intermediation of trade by car dealers
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as well as direct consumer transactions. Recent studies such as Biglaiser, Li, Murry
and Zhou (2020) have provided new empirical insights into the microstructure of trade
that are not modeled in our framework, but represent important directions to pursue in
the development of more detailed and realistic models of the microstructure of trade in

automobiles.
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Appendix
A Proofs

Lemma L1 (Jacobian Matrix of the Smoothed Bellman Operator). Let EV be the unique
fixed point of the smoothed Bellman operator T' in (9), and let Vpy['(EV,P) be the
Jacobian matrixz of I' with respect to EV'. The following holds:

Vey'(EV, P) = fQ(P)Q, (45)

where the matrices Q(P) and Q are defined in equations (24) and (27), respectively. The
norm of this matriz is |Vey'(EV, P)|| = 8 € (0,1).

Proof. This Lemma can be proved via direct calculation, though the algebra involved
is extremely tedious. We sketch a more conceptual proof of the result here. First,
note that the operator I' is a smooth nonlinear and recursively nested function of log-
sum functions (11). The log-sum functions are in turn functions of the choice-specific
value functions v(i, a, j,d) given in equations (3), (6), and (8) of section 3. These value
functions, call them v, are in turn functions of the expected values EV a result we
emphasize by writing ['(EV, P) = I'(v(EP), P). Using the chain rule to compute the
Jacobian matrix V gy '(EV, P) with respect to the Ja + 1 x 1 vector EV', we have

VevD(EV, P) = V,T'(v(EV), P)Vgyo(EV). (46)

The Lemma follows by showing that V,I'(v(EV), P) equals Q(P) and Vgyv(EV) equals
BQ. The former result follows from the Williams-Daly-Zachary Theorem (see McFadden
(1981)), and the fact that the I" operator can be expressed as the expected maximum of
the v functions with the additive GEV errors as shown via the representation of I'(EV, P)
as the value functions V' given in equations (2) and (5). The Williams-Daly-Zachary The-
orem implies that the derivatives of the expected maximum of v 4+ € with respect to v
equals the choice probabilities IT such as in equation (13). When the matrix of values v
is arrayed in the same order that EV is arrayed (with first Ja elements of EV equalling
EV(i,a)fori=1,...,J and a=1,...,a and Ja + 1-st element equal to £V (¢) and we
account for the fact that some elements of EV appear in multiple different elements in
any given row of the matrix v), it is not difficult to see that V,I'(v(EV), P) = Q(P),
where the latter is a (Ja + 1) x (Ja + 1) Markov transition probability matrix given in
equation (24). Further using the formulas for v(EV) in equations (3), (6), and (8) of
section 3, it is not hard to see that Veyv(EV) = SQ, where @ is the accident/aging
transition probability given in equation (27). Since @) and (P) are both Markov transi-
tion probability matrices, so is their product, M = Q(P)Q. Recall the notion of a matrix
norm, ||M|| = sup, [|Mz||/||z| where ||z| is a norm of the vector z (e.g. Euclidean
norm or sup-norm). When M is a transition probability matrix, it is easy to see that
|Mz|| < ||z||, which implies that ||[M|| < 1. Let e be a vector all of whose elements equal
1. Then Me = e which implies | M| > 1, or ||[M|| = 1. Also it is easy to see from the
definition of a matrix-norm, ||SM|| = 5||M]||. It follows that ||SQ(P)Q| = 5. O

Lemma L2 (Differentiability). The unique fized point EV of the smoothed Bellman
operator in (9), the choice-specific value functions v(-) in (2), (5) and (7), the choice
probabilities 11(j, d, s|i, a) in (13), the trade transition probability matriz Q(P) and excess
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demand function ED(P) exist and are continuously differentiable functions of market
prices P. The Jacobian matriz of the fixed point EV with respect to the market prices is
given by

VpEV(P) = —[I — Vi T(EV, P)| 'V ,T(EV, P), (47)

where VpI'(EV, P) is the Ja+ 1 x J(a — 1) Jacobian matriz of I' with respect to market
prices P.

Proof. Existence of a unique fixed point EV = T'(EV,P) for any P follows because
the operator I' can be shown to be a quasi-linear, monotone mapping (see Rust, Traub
and Wozniakowski (2002)) and thus is a contraction mapping with a unique fixed point
EV. By Lemma L1, I'" is a continuously differentiable function of EFV with gradi-
ent VeyI'(EV, P). By the Implicit Function Theorem we can express EV as a zero,
F(EV,P) =0 = EV —T'(EV,P) and the solution EV will be a continuously differen-
tiable implicit function of P provided that Vgy F(EV, P) is invertible. However from
Lemma L1 Vg F(EV, P) = I — Q(P)Q, and this is invertible with the geometric series
representation for its inverse

1 paP) = AP (48)

t=0

Then since EV(P) is a continuously differentiable function of P, it is easy to see from the
formulas for v, the conditional choice probabilities IT and the transition probability matrix
Q(P) are continuously differentiable since they are explicit smooth functions of EV(P).
The formula for VpEV (P) in equation (47) is a consequence of total differentiation of
the identity I'(EV(P), P) = 0 with respect to P and solving for VpEV (P).

[l

Lemma L3 (Gradient of invariant distribution). Consider a n x n Markov transition
probability matriz P(0) that depends on a parameter € RF in a continuously differ-
entiable fashion.*> Let h(0) be the unique invariant distribution of P() satisfying the
equation

h(0) = h(0)P(0). (49)

Then the n x 1 transpose of h(0), h(0)', is the unique solution to the expanded (n+ 1) X
(n+ 1) linear system given by

-2 )[4 [3]

where e is an n X 1 vector all of whose elements equal 1, and I is a n X n identity matrix.
Moreover, h(0) is a continuously differentiable function of 0, and the simple expression
for the Jacobian matriz Vyq(8) are readily available.

Proof. The stationarity condition (49) can be recast as h(f) being a left zero of the
matrix I — P(#). The usual application of the Implicit Function Theorem to F'(h,0) =0
where F'(h,0) = h(0)[I — P(6)], would provide the result. Unfortunately the prerequisite

45 Thus, we assume that the mapping Vo P(#) from R* to RF*™*" (where the latter can be interpreted as the
space of k-tuples of n X n matrices) exists and is a continuous function of §. To make things easier to understand,
assume initially that k = 1 so we are considering P(0) and h(f) as functions of a single parameter 6. If 0 has k
components (i.e. § € R¥) we simply “stack” the formulas we provide below in the univariate case into a k-tuple.
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condition that V,F(h, ) is non-singular at a zero of F fails as V,F(h,0) = I — P(6),
and this matrix is singular.

Let A(0) be the (n+ 1) x (n + 1) matrix on the left hand side of equation (50). It is
not hard to show that A(0) is invertible and we can write

RS G N O

Then we have that Vyh(6) is the upper left n x n submatrix of the product of VyA~1(6)
e

9 } . Further, the standard formula holds for the gradient of A~!(6)

times the vector [

with respect to 6
Ve AT (0) = —ATH(0) [VeA(0)] A(0), (52)

and we have

] T )

Results of Lemma L3 are useful in both the differentiating the invariant ownership
distribution with respect to the market prices for the equilibrium computations, and the
structural parameters for the estimation of the model. In both cases, P(f) is given by
Q,(P)Q; as per equation (34). Computing the required Vp, Q. (P)Q, for each price P,
on the secondary market is straightforward. The same applies to all parameters of the
utility function. Yet, if 6 includes accident probabilities «(i,a) that enter in @, product
rule has to be invoked leading to a slightly more involved expression V,(;.)Q(a)Q(a) +

Q) Va(i,a)Q(a).

A.1 Proof of Theorem 1 (page 23)

Proof. When scale parameters of GEV distribution of random components € are positive,
o >0, > 0j > 0 > 0, the choice probabilities are bounded away from zero for all choices
and for any price vector P. Thus, the transition probability matrix Q(P)@Q is irreducible
and aperiodic. Uniqueness of the stationary distribution ¢ that satisfies ¢ = ¢Q(P)Q
follows from the fundamental theorem of Markov chains.

To show continuous differentiability of the stationary distribution ¢ given as an implicit
function of P by ¢ = ¢Q2(P)Q), it would be enough to apply the Implicit Function Theorem,
but unfortunately the prerequisite invertibility condition fails in our case. Indeed, ¢ can
be treated as a left zero of the matrix I — Q(P)Q, where [ is the identity matrix of the
appropriate size. In other words, ¢(P) can be written as a zero the non-linear mapping
F(q,P) = q([ — Q(P)Q) = 0. However when ¢ is ergodic, Lemma L3 provides an explicit
solution for ¢(P) as the inverse of a bordered matrix for which I — Q(P)Q is an upper
left (Ja + 1) x (Ja + 1) submatrix. It also provides a formula for Vpq(P) in terms of
gradients of the matrix Q(P) with respect to P. This proves that ¢(P) is uniquely defined
and continuously differentiable function of P.

[
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A.2 Proof of Theorem 2 (page 24)

Proof. The proof of existence of an equilibrium follows from Brouwer’s Fixed Point Theo-
rem by defining a mapping ¥(P) : R’@~1) — R/(@=1 where ¥(P) = P+ ED(P), J(a—1)
is the dimension of the price vector P and number of used cars traded in secondary mar-
kets with J types of cars sold in the primary market and a the oldest tradeable car age
in each market, and ED(P) is defined in (23). From Lemma L2 it follows that £D and
thus ¥ is a continuous mapping from R’7(@=Y — R’/(@=1 Note also that for any P the
components of ED(P) lie in the interval [—1, 1]. Thus, when prices are sufficiently high,
a vanishing number of consumers will wish to buy any new car but nearly all consumers
will want to sell their cars, so ED(P) will be close to a vector with all its components
equal to —1. Similarly, for a sufficiently low set of prices (possibly negative), nearly all
consumers will wish to buy used cars and very few will want to sell their vehicles at such
low prices. So for such prices ED(P) will be close to a vector with all of its components
equal to +1. It follows that we can define a compact box B in R’(*~1) where ¥ satisfies an
“inward pointing” property on the boundaries of this box, so it follows that ¥ : B — B.
Since V is a continuous mapping and B is a compact, convex set, the Brouwer fixed point
theorem implies that a fixed point of U exists, and it is clear that any such fixed point
satisfies ED(P) = 0.

O

A.3 Proof of Theorem 3 (page 25)

Proof. The proof is based on the observation that the physical transition probability
matrix ) in equation (27) is block diagonal, implying that the stationarity condition (29)
in Theorem 2 can be written separately for each car make/model j as

Ay (P)

q + [lea---,Qja}Aj(P) Q; = |:qj17"'7qj@] = 4y,

AJ]-'(P )
A@j(P)

where A;;(P), A;(P), and ¢; are defined in equations (25), (26) and (20) respectively.
The matrix @); is stochastic, therefore we can effectively get rid of it by right-multiplying
both side of the equation with the column of ones e = [1,...,1] € R This is equivalent
to taking the sum over all ages between 1 and a. It also follows from the structure of
matrices A;;(P) that the first component in the LHS of the equation above is nothing
but the vector of demand for j-type cars from age 1 to a — 1 with the last element equal
to the demand for the new cars D;o(P,q) given in equation (21). We then have

([Djl(P, q),-...Djar(P.q), Dio(P, q)} + quj(P)) e = ge.

Using the market clearing condition (30) in Theorem 2 we can replace the first a — 1
components in the vector of demands with the corresponding supply. To maintain the
matrix notation we express supply given in equation (22) with the help of the keeping
choice matrix A;(P) defined in equation (26), and the similarly constructed diagonal
a x a matrix A3(P) of probabilities to scrap II(1;]j, a, P). Naturally, A3(P) has to have
1 in the lower right corner corresponding to the choice probability of scrapping a car of
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the terminal age a. The vector of supply for all ages between 1 and a is then given by
q; (I — Aj(P)) (] — Aj(P))7 with the appropriate zero as the last element. Continuing the
derivation we have

<Qj —qj (I - AJ(P))Aj(P> + [0, NN 70, Dj()(P, q)]) € = g e.
It then immediately follows that
q; (I — Aj(P))A5(P)e = Djo(P, q),

which is the matrix form of the stationary flow condition (32). O

A.4 Proof of Theorem 6 (page 40)

Proof. By the inversion theorem (Lemma 2 Arcidiacono and Miller, 2011) the differences
between any two choice specific value functions given in Section 3 are identified. At this
point we do not rely on the location normalization of the utilities, but assume that the
scale of the extreme value shocks is fixed. There are many ways to show identification
of the monetary part of the utility function, but one simple way is the following. All the
derivations in the proof can be carried out for each consumer type, we drop the subscript
7 for clarity.

Consider the value differences for the choices to purge an existing car given in equation
(3) and the choice to remain in the no car state given in equation (8). We have

U(ia a, o, 18) - U(@, Qj) = MBZ’ (54)

and thus the marginal utility of money pu is point identified (up to a scale).

Next, consider the pairwise differences between the choice specific values v(i, a, 7, d, 1),
v(i,a,7,d,0s) and v(i,a, k) given in equation (8). Under the assumption [c] seller trans-
action costs Ts(i,a) = 0, and we have the following linear system of two equations with
two unknowns

/I'](Z? a? j? d7 OS) - U(Z7 a’ j’ d? 15) = _/"L[TS(Z7 a) - Pia + Bl:l?
v(i,a,i,a,05) —v(i,a, k) = —u[Ts(i,a) + Ty(i, a)].

Given p, this system yields identification of the prices and transaction costs for all tradable
carsi € {1,...,Jtand a € {1,...,a — 1}. O

B Solving the Homogeneous Consumer Economy

The limiting case of our model when ¢ — 0 constitutes the discrete product market
version of Rust (1985a). In this appendix we lay out a simple and efficient numerical
solution algorithm for this limiting case, which constitutes the source of precise starting
values for the main numerical algorithm in Section 3. We have proven that the following
results from Rust (1985a) continue to hold in our discrete setting. Proofs for these results
are available on request.

Theorem 1 (Equilibrium in homogeneous consumer economy). Consider the primary
and secondary market for automobiles with one car make/model and homogenous con-
sumers (o = 0). Assume infinitely elastic supply of new cars at price P and infinitely
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elastic demand for scrapped cars at price P. The unique stationary equilibrium {q, P, a*}
on this market exists, and is composed of:

1. Ownership distribution q, which is the unique invariant distribution corresponding
to the physical transition probability matriz () defined in (27);

2. Common scrappage age a* equal to the optimal replacement age in the social plan-
ner’s problem of optimal car replacement (in the absence of secondary market, or
equivalently within the class of “buy and hold” strategies);

3. Non-increasing price function P(a) defined by

Pla) = { g— L (W(0) = W(a)), Z;gla — 1}, (55)

where W (a) is the unique fized point of the Bellman operator in the forementioned
social planner’s replacement problem.

Corollary C1. In the equilibrium of the homogeneous consumer economy with no trans-
action costs defined in Theorem 1, consumers are indifferent between replacing their ex-
isting car with the car of any age available in the economy. This holds for owners of all
ages of cars with positive shares in the stationary fleet age distribution.

Corollary C2. The equilibrium in the homogeneous consumer economy with no trans-
action costs defined in Theorem 1 is welfare maximizing, in particular the discounted
expected utility of all consumers is equal to mazximum attainable welfare, V(a) = W(a),
for all cars with positive shares in the stationary fleet age distribution.

The main idea of the fast solution algorithm for the homogeneous consumer economy
is to express the indifference condition from Corollary C1 as the system of a* — 1 linear
equations to determine the unrestricted prices P(a), a € {1,...,a* — 1}. Because by
Corollary C1 consumers are effectively indifferent between any dynamic trading strategies,
the strategy of perpetual replacing an existing car of age a results in the maximum
attainable expected discounted utility V(a). We have for a € {1,...,a* — 1}

V(@) = 145 (ula) - Bul[P(a) = (1 = a(@) Pla+ 1) - a(a)P]). (56)

Let V(0) denote the value of having a new car which is measured right after trading
instead of the beginning of the period. Then (56) also holds for a = 0, and V' (0) = W (0).
Thus, using V(a) — V(a+ 1) = W(a) — W(a + 1) (Corollary C2) and the definition of
the price function (55), we have for a € {0,...,a* — 2}

V(a) = pP(a) =V(a+1) — pPa+1), (57)

which leads to the following linear equation in prices (P(a), P(a + 1), P(a + 2)):

pP(a) + p(a(a)8 — B —1)Pla+1) + pB(1 — ala+1))Pla+2) =
— u(a) — ula+ 1) + BuP(a(a) — ala + 1)). (59)

The collection of equations (58) for a € {0, ..., a*—2} forms the system of a*—1 equations
with ¢ — 1 unknowns, and can be easily solved numerically under our assumption that
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u(a +1) < wu(a) for a > 0. The system be written in matrix form as
X-P=Y, (59)

where P is the column vector of prices {P(a)}aeq1,...ax -1}

a(0)B-B-1 B—a()B 0 0 0 0
1 a(l)f—B—1  B—a2)8 0 0 0
0 1 a2B-B-1 B—a(3)8 0 0
0 0 1 aB3)B-B—1 0 0
X = 0 0 0 1 0 0
0 0 0 0 - Oé(a*—3)'ﬁ—6—1 B—a(d*—2)5
i 0 0 0 0 1 a(a* —2)B-F-1 |
(u(0) — u(1))/p+ BP(a(0) — (1)) — P
U(l —u(2))/n+ BP(a(1) — a(2)
u(2 —u 3))/u+ﬁP(a 2) — a(3)
ua 73 ) — u(a* 72))/,u+,6’£(a(a*73)701((1*72))
(u(a* —2) —u(a* — 1)) /p+ BP(a(a* —2) — 1)
Note that system (59) is well defined for any a* > 2, and consequently a solution to the

system denoted P(a,a*) can be computed for any Value of a*. We show that the solution
of the social planner’s problem W (a) corresponds one-to-one to the solution of the linear
system (59) under the condition on the price vector Ya € {1,...,a*} : P < P(a,a*) < P
and P(a*,a* + 1) < P. Because solving a system of linear equations implies much
lower computational cost than finding a fixed point W (a), and in particular because the
dimensionality of the social planner’s problem is larger than that of the linear system, an
iterative algorithm that solves (59) for various a* to ensure the conditions above hold, is
the most efficient numerically.

C Likelihood when accidents are unobserved

Consider the transition probability in a partial information situation where we do not
directly observe whether a given car is involved in an accident that leads to its scrappage.
As a result we do not fully observe the state x; representing car holdings of a given
household, since for any car state x; = (i, a;) where a; = a;, (i.e. cars that have reached
the mandatory scrappage state/age a;,) we cannot distinguish which of those car are in
that state due of an accident (since accidents are not directly observed) and which are in
that state not due to an accident, but due to being age a;, —1 in period t — 1. However we
do observe whether the previously chosen car (j;_1,d;_1) was scrapped (exogenously due
to accident or endogenously due to voluntary scrappage decision) or not. This implies
we fully observe the post-trade ownership state d;, and so our approach to inference in
the partial information case will be based on the transition probability P(ds41|d:, 7, 0).

In the case where §; = (¢, (;) (either a decision to enter the no car state via a purge
decision with an associated scrappage outcome (;, or a decision to remain in the no car
state if z; = ¢ in which case (; is not relevant), P(d;41|0;, 7,6) is just the conditional
choice probability given in equation (13).

If the household did choose to either trade for a car (i;, a;) or keep their car (i, a;)
at time ¢, since we do not observe whether that car was involved in an accident between
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t and t + 1, the relevant transition probability P(d;41|d;, 7,6) is a mixture of two choice
probabilities, depending on whether the car was involved in an accident or not. Thus,
when a scrappage event is observed for the car the household chose at ¢, then s;11 = 1g,
(here we let the scrappage indicator, s;.1, equal 1, if the car the household chose at ¢ was
scrapped by period ¢ + 1, and 05 otherwise), the transition probability P(d:41|0:, ¢, T, 0)
is given by

P(jt+17 dt+17 <t+1 = 1s|it7 G, Ct; T, 9) = H(jt+17 dt+1|it7 ait? T, ‘9>O‘(it7 at>+
H(jt—i—h dt+1|it> a;+ 1,7, 9)H<3t+1 = 1s|jt+1a dt+1, i, ap + 1,7, 9)(1 - a(itv at))a (60)

where T1(jyy1, di11]i¢, @i, , 7, 0) is the conditional choice probability for a household holding
a “clunker” which requires a forced scrappage of the vehicle by our modeling assumptions.
Thus, in the event of an accident of the car the houseold chose at time ¢, we represent it
as a transition to the clunker state @ and in this choice there is no choice over whether
or not to sell or scrap the car, so I(s;41 = 1g|jss1, deyr, i, a,7,0) = 1. If there is no
accident, then the household does have a choice of whether to scrap or sell the car, so
in this case we do include the conditional probability of the scrappage choice, I1(s;41 =
Ls|gex1, dis1, i, a0 + 1,7,60) to calculate the overall transition probability in (60) in the
event of an observed scrappage of the chosen car between period ¢ and ¢ + 1.

If there was no scrappage of the car the household chose at time ¢ between periods ¢
and ¢ + 1, which we denote by (41 = 0, then P(0;41|0s, 2, T, 6) is given by

P(jis1, digr, Gy = Oglig, ap, G, 7,6) =
H(jegrs diga i, ar + 1,7,0) (1 — IL(S441 = Ls|fegr, digrs i, ae + 1,7,0)) (1 — a(ie, ar)),

i.e. it is the probability of choosing to trade the existing car but also choosing not to
scrap at t + 1 conditioning on the event no accident occurred between ¢t and ¢ + 1 either.

In the event of a choice to keep the current car at time ¢ 4+ 1, which we have denoted
earlier in the paper via the special symbol (jy41,di11) = K to distinguish it from a decision
to trade the current car (i, a;) for another car with the same type and age, i.e. j11 = i
and d;11 = a;, we can conclude that no accident and no voluntary scrappage of the
previously chosen vehicle could have occurred. Since the keep decision obviates any
choice about selling or scrapping the existing car, the transition probability for the keep
decision is given by

P(jer1 = ity de1 = ay + 1, Gy iy, g, G, 7,0) = (K], ap + 1,7,0) (1 — iy, ar)).  (61)

We include the previous car ownership state x; as a conditioning variable in the transition
probability P(0;11|d¢, x4, 7, 6) just as we did in the full information case above since when
a household decides to keep their current car, we need the information in the incoming
car state x; = (iy,a;) to determine the coditional probabilities of a scrappage decision
and whether the car will have an accident.

The Kullback-Leibler distance in the case of unobserved accidents is given below

D(6) = (62)
NS g (P(3')6, 2, 7)) — log (P(8']8, x, 7,0))] P(8'6, 2, 7)P (8], 7)g- (x) £ (7).
T T 1 &
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We assume that via direct observation post-trading ownership states, d; and d;,1, it is
possible to non-parametrically estimate the transition probability P(d'|d,z,7) for each
observed household type 7. Note that though z is not always fully observed, it is ob-
served when a household chooses to keep their car. It is not observed for all decisions
involving trading the previous car, however the identity of the new car captured in o
is a sufficient statistic for determining the probability distribution of ¢’ and in the case
of a trade, P(0’|0,x,7) is independent of z given 4. It follows that P(d’|0, x,7) can be
non-parametrically estimated in the case where accidents are unobserved and thus the
state x is not fully observed.

It is also possible to non-parametrically estimate the cross-sectional distribution of
car ownership choices ¢, (d) for each household type 7. This is the stationary distribution
of car ownership states, prior to accounting for accidents, whereas ¢,(x) is the actual
incoming stationary distribution of car ownership states, accounting for accidents. It is
not hard to show that if ¢.(z) is the invariant distribution of car ownership states at the
start of any period ¢ for household type 7, then ¢.(6) = > P(0|z, )¢, (x) is an invariant
distribution of household car choices, where P(d|z, T) is the conditional probability that
a household of type 7 makes a car ownership decision 6 at time ¢ + 1 conditional on
their car state being x at time ¢, and where we have added the probability of keeping the
current car x = (7, a), denoted by 6 = (k, k), to the conditional probability of trading for
a car of type/age © = (i,a). That is, when 6 = = we define ¢;(9) as >, P(d]2’, 7)g-(z') +
P(1|z,7)g;(x). With this redefined ¢ variable it is no longer necessary to condition on
x when writing the conditional choice probability of choosing a car (and scrapping the
existing one) at time ¢ + 1, we can now simply express it as P(d'|d, 7). Then using the
invariant distribution over car ownership decisions, ¢,(d), we can write the Kullback-
Leibler distance in the case where accidents are not observed as follows

D) =) > > Nog(P(E]6,7)) —log (P(5'16,7.6))] P(&16,7)¢-(8)f (7). (63)
T 6 0

In summary, in the full information case the relevant transition probability that we use
as a basis for estimation is P (1|7, T,60), where x; is the fully observed car ownership
state of the household, expressed as a product of the conditional choice probability for
the household’s decision over next period car state, and an accident probability that gives
the final realized car state x;, at the start of the next period ¢t + 1. When accidents are
unobserved, the relevant transition probability is P(d;41|0, T, 6), using the post-decision
state d;, which is necessitated by the fact that we do not fully observe the car state x; at
each time period due to the fact that accidents are unobserved.

D Notes on the identification of the model with driving

This appendix is a short note on the identification of the model when we allow for driving,
with a linear specification for the predicted optimal driving that can depend on the age
of the car. Consider a utility function of the form

u(a, ©) = Yo + ra + aa® + (Yo + ya)x — upr + %S$2 (64)

where a is the age of the car, x is vehicle kilometers driven each period, and the parameter
vector is 0 = (1o, V1, V2, Y0, 71, 14, ¢). We can consider the sum of the first three terms on
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the right hand side of equation (64) to be the utility of ownership per se, i.e. the utility a
consumer gets from the pure ownership (and option value to drive) even if the household
does not do any driving, = 0. The remaining components are the net utility from
driving, after deducting the cost of driving (translated into utility terms by multiplying
by the marginal utility of money, 1). There are seven parameters to be identified for each
consumer type/car type in the model, and for notational simplicity we have suppressed
the dependence of all § parameters except for p (the marginal utility of money or price-
responsiveness coefficient) since we assume that p depends on consumer type 7 but not
on the car type j.

We want to consider the identification of these parameters from observations on: 1)
consumer trading of automobiles, and 2) observed driving. The symbol p is the per
kilometer cost of fuel plus any taxes, and in our model there is no variation in this price,
either over time or across consumers. However there is variation in p across car types
due to different fuel efficiency of different types and ages of cars. However we really
cannot use variation in p as a source of identification of the model parameters if we are
being fully faithful to the model, which currently does not allow any time series or cross
sectional variation in p except over car types as noted above. Fortunately, we now show
that we can identify the parameters using the information on car trading, and in a way
that is “just identified” so we don’t face a trade-off in terms of fitting the model of car
driving or the model of car trading: each can be estimated separately and the structural
parameters that imply the best-fitting “reduced-form” specifications for driving and car
trading are derived below.

We derive the indirect utility function first, by using the utility function above to
calculate the optimal level of driving,

2*(p,a) = —% o + 1 — apl. (65)

Equation (65) is the “structural driving equation” implied by the direct utility function
u(z,a) in equation (64). But there is a corresponding “reduced form” or unrestricted
driving equation which we denote by

xr = do + dla + de. (66)

Though there is no identifying variation in p we do have identifying variation in a, so
we can separately identify the constant term in the driving equation in (65) and the
age coefficient. So we can treat the age coefficient v, /¢ as known given knowledge of
observed driving z*(p, a) and also the constant term [yo — pup]/¢, though at this point we
cannot separately identify all the parameters from only these two identified coefficients
from the “driving equation.” Note that optimal driving must be positive, so this implies
an additional inequality restriction on the parameters,

’YO—'—/ylaZ:ul% (1,:{0,1,...,@—1} (67)

and if, as we expect, 7; < 0, then the set of restrictions below can be reduced to this
single inequality restriction at the last age consumers are allowed to own cars

Yo+ 1@ —1) > up (68)
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but if this inequality is violated, then it is easy to see that *(p,a) = 0 and the consumer
gets zero utility from owning a car (and hence absent extreme value shocks would not buy
one since the utility from the outside good is normalized to zero, and there are purchase
price and transactions costs involved in buying a car).

Now plugging the optimal driving back into utility, we can derive the indirect utility
function,

o, (o)) = vla.p7) = o+ tna+vad = 3ol ma— il (69
= U+ ura + uxa’ (70)
where
uozwo—z%bho—up]a ul:wl_%h@_ﬂp]? uzsz—%ﬁ (1] -

We can consider the coefficients (ug, u1, uz) and the marginal utility of money as identified
from an unrestricted or “reduced form” dynamic discrete choice model of car trading. We
now argue that the seven parameter specification of utility u(z,a,#) given in equation
(64) is just identified from unrestricted estimation of the reduced-form driving equation
(66) and the dynamic discrete choice model of car trading. First, assume we can identify
the marginal utility of money, p, from estimation of the latter model. Then there are
only 6 remaining structural parameters to be identified, (v, %1, 2,70, 71, ¢) and these
are determined from the following 6 equations that provide enough flexibility to ensure
perfect unrestricted fit of both the reduced-form driving equation (parameters (dy, dy, ds))
and the reduced-form dynamic discrete choice model (parameters (ug,u;,us2) plus the
marginal utility parameter ).

_H
¢

Thus, given the estimate of the marginal utility of money fi from the dynamic discrete
choice model, we can back out ¢ from the last equation of (71), and thus also (§o,%1).
Then given these parameter estimates we can determine the parameters (120, 1/;1, %) from
equation (71) in a way that entails no restrictions on the estimation of the coefficients
(do, dy, ds) of the reduced-form driving model (66) or the coefficients (u, ug, u1, ug) of the
reduced-form dynamic discrete choice model of car trading.

To derive (70) we assumed that inequality (68) holds so that the consumer would want
to do some positive driving at all possible ages. However if the inequality does not hold
at all ages, then u(a,x*(p,a)) is given by (70) only for ages a satisfying inequality (67)
and for all higher ages a > a (where a is the largest age for which inequality (70) holds),
then z*(z,p) = u(a,2*(p,a)) = 0 for all @ > a. Notice that vy > 0 and uy > 0 and if
v1 < 0, then u; < 0. Thus, consumer preferences over cars of different ages are expected
to be decreasing and convex in the age of the car. The strict convexity in age is required
in order to imply a finite amount of driving: i.e. if ¢ = 0 (so indirect utility is linear in
a) then x*(p, a) is predicted to be infinite for any a where the inequality restriction (67)
is strict.

Now let’s suppose that we could identify the four parameters (ug,uy, us, pt) by esti-
mating a model of automobile trading that ignored driving, but with a utility function
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that is quadratic in the age of the car as in equation (70). We presume that the marginal
utility of money parameter p is identified by the variation in trading cars of different
ages using known prices of used cars, P(a), a =0,..., P(a — 1) that are treated as data.
Even though these prices are the same for all consumers, there is variation over ages of
different cars and combined with the scrappage decision, we will assume these coefficients
can be identified.

Now given the additional observation on driving are the other coefficients (7o, v1, @)
identified? The answer is yes. As we noted above, the ratio v;/¢ is identified from the
driving equation (65), and the coefficient vi/¢ is identified as the quadratic coefficient
uo from the dynamic discrete choice model of vehicle trading with the quadratic in age
utility function given in (70). Thus 7, is identified as the ratio of these two coefficient
estimates. Next, given v; we can identify ¢ from either the linear term of the driving
equation, —v; /¢ or the coefficient uy on the a? term of the utility of the dynamic discrete
choice model, uy = —v}/(2¢). Then using the equation for u;, the coefficient on a
in the dynamic discrete choice model, we can identify ~y. Thus the parameter vector
0 = (70,7, i, ¢) is in fact overidentified since there are additional restrictions implied by
the parameters via the constant term in the driving equation, z*(0,p) and the constant
term ug in the utility function in the dynamic discrete choice model.

These parameters could be estimated by jointly by maximum likelihood, if we treat
observed driving as affected by measurement error. But doing this would require estima-
tion of an additional parameter for the variance of the measurement error in driving. We
would also have to take seriously the inequality restriction (67) and make sure that we
don’t ignore it and get strange results from squaring negative predicted driving, rather
than carefully obeying the inequality restriction that implies cars provide zero direct
utility when predicted driving is negative.

To get started, I would favor an “indirect least squares” sort of approach where we just
estimate the coefficients (ug, u1, ug, pt) of the dynamic discrete choice ingoring driving and
make sure we can fit the pattern of trading in cars well. Then with these estimated, we
can estimate a linear driving equation and “back out” the implied (7o, 71, ¢) coefficients
via an “indirect least squares” approach and check that they are reasonable. This would
be the “second step”. Finally for more efficient parameter estimates, we could estimate
the model “structurally” (either by ML or by MM) that impose the “cross equation
restrictions” from the observations on driving and observations on car trading using the
indirect least squares parameters as starting points and then recasting the parameters of
the model directly in terms of the “deep structural parameters” that allow for driving,

0= (’707’717/'% ¢)

E Estimation details

E.1 Data and Institutional Details

The data comes from the Danish demographic registers and covers the period 1996 to
2008. The dataset covers the universe of all Danish households and all cars owned by
private individuals. Driving information is obtained from odometer readings that occur
when cars are taken to mandatory driving inspections biannually starting from a car age
of four.*® Fuel prices come from eof.dk and are a country-level average.

46That is, a car is inspected at ages 4, 6, 8, 10, and so forth.
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Car types: Cars are aggregated into four discrete types: we first split cars based on
whether the car’s weight is above or below the median for that car’s vintage cohort, and
then within each of those two subsamples, we further split cars based on whether they are
above or below the median fuel efficiency. This way, we get four classes of cars, that we
name “green” or “brown” for high and low fuel efficiency respectively, and “heavy” and
“light” for high and low weights, respectively. Making the splits separately by vintage has
the benefit that the distribution of car types is roughly constant over time, but has the
drawback that car attributes for the four classes are not constant.*” Therefore, we simply
take the average of the car attributes for each of the four types in our model. Finally, we
split cars into 25 age groups from brand new to 24 years old, where the last age category
captures cars of 24 years or older. Table 3 presents key summary statistics for our four
car types, aggregated over all the years of our sample as well as all the different car ages.

Household types: Households are split into 8 different types based on whether the
household is a couple or single, has high or low work distance, and whether income is
high or low based. Income splits are based on the median income in the demographic
cell. Work distance comes from the Danish tax deduction for travel distance to work.
This deduction is only applicable for full-time workers living further than 12 km from
their work place (each way), and slightly under half of Danes have high work distance
by this definition, although it differs quite a bit by cohabitation status. Table 2 presents
summary statistics, where we have computed the weighted average over the years of our
data for each household type to simplify the exposition. We also present averages for the
number of kids in the household.

Prices: Recall that our model takes the new car price and the scrap price as given.
Towards this end, we leverage data on the MSRPs to construct new car prices, which
we take as the weighted averages of all underlying car types matched to each of our four
discretized types, j. We construct an estimate of the scrappage price by leveraging data
on suggested annual depreciation rates of 87% that we have from the Danish Automobile
Dealer Association.*® We construct these numbers for all years 1998 to 2008 and take
the unweighted average over years.

The registration tax paid upon the purchase of a new car in Denmark is among the
highest in the world. It is a linear tax that has a kink, K, with one rate, 71, below K and a
higher rate, 75 > 7, applying to any price above K. Finally, 25% VAT is paid of the price
including the tax. So if the price before the registration fee and VAT is given by P, then
the registration fee to be paid is given by 7'(P) = 7 min(1.25P, K')+m max(1.25P— K, 0).
In 2008, K was 81,000 DKK (around 16,000 USD), 71 was 105% and 75 was 180%. In our
counterfactuals in Table 1, we lower 7; and 7 to half their initial values, i.e. 52.5% and
90% respectively. There are also annual taxes for car ownership as well as mandatory
insurance costs, which we abstract from.

We use a social cost of carbon of US$50/ton (290 DKK) and the other external costs
per kilometer travelled are valued at 0.6216 DKK /km and they consist of noise, accidents,
congestion and local air pollution, as measured by Transport (2010).

We do not observe scrappage in our data per se. Instead, we define a vehicle as
having been scrapped if an ownership spell ends and no other ownership spell ever begins
afterwards. Since our extract of the ownership register comes from September of 2011

4TIn reality, technological progress implies that car attributes are improving over time as engines can drive
further per liter of fuel. To accomodate our model’s stationary nature, we ignore this “attribute inflation”.

“8The rates vary by car type but that variation is negligible, especially compared to the variation in new car
prices across car types.
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Table 2: Summary Statistics for Households

T Name N Income 1(Single) Work distance  Age 1(Urban) No. kids
1 Low WD, Couple, Poor 6,500,464 311.68 0.00 0.00 55.03 0.22 0.48
2 Low WD, Couple, Rich 6,352,821  777.19 0.00 0.00 46.38 0.21 1.03
3 Low WD, Single, Poor 7,906,100  109.92 1.00 0.00 54.21 0.35 0.11
4 Low WD, Single, Rich 7,666,452  301.15 1.00 0.00 48.21 0.33 0.20
5 High WD, Couple, Poor 4,031,412  494.61 0.00 34.63  40.58 0.12 0.99
6 High WD, Couple, Rich 3,862,441 862.43 0.00 42.13  43.57 0.12 1.21
7 High WD, Single, Poor 1,217,611  215.04 1.00 26.71  33.85 0.25 0.22
8 High WD, Single, Rich 1,171,919 413.24 1.00 3298 41.14 0.22 0.24

Note: The column “N” denotes the observations of each household type available across all the years, 1996-2008.

The remaining variables are all weighted averages of the corresponding variables with the annual observation

counts as weights. Household types are defined based on splitting the sample into cells based on single/couple

status, whether work distance is zero or positive, and finally splitting households in two depending on income

within the cell is above or below the median. Work distance is based on a travel tax deduction, and it is only

positive if one of the household members has more than 12 km to work (each way), and so it is naturally zero for

unemployed. The urban dummy is equal to one for the six largest cities in Denmark: Copenhagen, Frederiksberg,

Aarhus, Aalborg, and Odense.

Table 3: Summary Statistics for Cars

No car light, brown light, green heavy, brown heavy, green

Obs. 16895290 4683737 5594897 5351904 6183392
Diesel share 0.00 0.08 0.14 0.21
Depreciation Factor 0.87 0.87 0.87 0.87
Weight (tons) 1.42 1.28 1.96 1.64
Variables used in the model
Price, new (1000 DKK) 174.90 144.55 299.45 253.40
Price, new excl. tax (1000 DKK) 67.33 56.41 102.91 89.76
Price, scrap (1000 DKK) 6.20 5.26 9.35 8.76
Fuel efficiency (km/I) 12.84 15.06 9.89 12.63

Note: The four car categories are defined by first splitting cars into two groups based on weight, and then on fuel

efficiency within each weight sub-group. The splits are made separately for every car vintage, implying that the

attributes of, say, a “light, green” car is changing over time. The variable “Depreciation Factor” is a suggested

annual depreciation factor set by the Danish Automobile Dealer Association. The rate varies across cars but not

over time, implying that the association uses a constant exponential discounting rule.
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Table 4: First-stage OLS Estimates of the Driving Model

Dependent variable: thousands of kilometers driven per year
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/¢
fir | D7
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fir /D7
[I’T/qu
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Intercept

Car age

Car age squared

Intercept, Low WD, Couple, Rich
Intercept, Low WD, Single, Poor
Intercept, Low WD, Single, Rich
Intercept, High WD, Couple, Poor
Intercept, High WD, Couple, Rich
Intercept, High WD, Single, Poor
Intercept, High WD, Single, Rich
Car dummy: light, green

Car dummy: heavy, brown

Car dummy: heavy, green

Price (common)

Price, Low WD, Couple, Rich
Price, Low WD, Single, Poor
Price, Low WD, Single, Rich
Price, High WD, Couple, Poor
Price, High WD, Couple, Rich
Price, High WD, Single, Poor
Price, High WD, Single, Rich

19.07  (0.58)
-0.1325  (0.03)
-0.001975  (0.00)
443 (0.70)
3752 (1.24)
-0.0325  (0.79)
9.825 (0.79)
1233 (0.74)
6.436 (1.52)
12.23  (1.27)
-1.994 (0.15)
4.345 (0.15)
3.606 (0.14)
7.074  (0.84)
4111 (1.02)
4732 (1.84)
0.2781 (1.16)
6.41 (1.17)
-9.892  (1.09)
1714 (2.29)
9.007 (1.91)

N

Driving periods

19,635,940

while our last sample year is 2008, this means that a car should have been without owner
for 3 years, which typically means it has been scrapped. Note also that we do not observe
whether a car was involved in an accident in the data, although our model will make a

distinction between accidents and voluntary scrappage decisions.

E.2 Estimation

As explained in Section 6, estimation is composed of three steps:

1. Estimate the reduced form driving parameters from (66) using linear regression: the

estimates are in Table 4.

2. Estimate the reduced form dynamic discrete choice parameters from (70) using

Maximum Likelihood: the estimates are in Tables 4, 5 and 7 to 10.

3. Back out the “deep structural parameters” 6. ; = (¥r.0, Vr.j1, Vrj2, Vr.j.0s Vrojds Prj)
for each of the 8 consumer types 7 and 4 car types j using equations (71) and (71)
of Appendix D.
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Table 5: Estimates: Accidents

light, brown

light, green heavy, brown heavy, green

Intercept

Age slope

-5.5876 -6.0006
(0.0122) (0.0109)
0.1725 0.2134
(0.0016) (0.0013)

-5.6697 -5.7399
(0.0096) (0.0090)
0.2007 0.1969
(0.0009) (0.0009)

Table 6: Estimates: Scrappage Decision

Estimate

0s: Scrap utility error variance

Intercept: selling (baseline is scrapping)

Selling in inspection years

0.3852
(0.3852)
-1.5999
(-1.5999)
-2.2955
(-2.2955)

Table 7: Estimates: Marginal Utility of Money

(-2 marginal utility of money

Low WD, Couple, Poor
Low WD, Couple, Rich
Low WD, Single, Poor

Low WD, Single, Rich

High WD, Couple, Poor
High WD, Couple, Rich
High WD, Single, Poor

High WD, Single, Rich

0.1074
(0.0006)
0.1059
(0.0006)
0.0895
(0.0007)
0.1024
(0.0006)
0.0980
(0.0006)
0.1091
(0.0006)
0.0890
(0.0007)
0.1028
(0.0007)
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Table 8: Estimates: Utility Intercept

ur o : intercept in indirect utility for car ownership

light, brown light, green heavy, brown heavy, green

Low WD, Couple, Poor 3.5100 2.9687 4.8387 4.5461
(0.0162) (0.0152) (0.0253) (0.0231)
Low WD, Couple, Rich 3.8870 3.3155 5.4279 5.1089
(0.0155) (0.0146) (0.0242) (0.0220)
Low WD, Single, Poor 2.3158 2.0491 3.3213 3.0367
(0.0177) (0.0157) (0.0272) (0.0251)
Low WD, Single, Rich 3.1192 2.6901 4.4031 4.0691
(0.0160) (0.0148) (0.0249) (0.0227)
High WD, Couple, Poor 3.7463 3.2959 5.0193 4.8326
(0.0149) (0.0138) (0.0231) (0.0210)
High WD, Couple, Rich 4.6059 4.1597 6.2197 5.9814
(0.0165) (0.0154) (0.0255) (0.0232)
High WD, Single, Poor 2.6024 2.3494 3.5814 3.3905
(0.0195) (0.0169) (0.0302) (0.0276)
High WD, Single, Rich 3.4274 3.0413 4.7046 4.4860
(0.0189) (0.0169) (0.0290) (0.0265)

Table 9: Estimates: Utility Age Slope

ur 1 : coefficient on age in indirect utility for car ownership

light, brown light, green heavy, brown heavy, green

Low WD, Couple, Poor -0.1397 -0.0914 -0.2084 -0.1651
(0.0008) (0.0009) (0.0013) (0.0011)
Low WD, Couple, Rich -0.1520 -0.0973 -0.2294 -0.1881
(0.0008) (0.0009) (0.0012) (0.0010)
Low WD, Single, Poor -0.0929 -0.0607 -0.1507 -0.1076
(0.0009) (0.0009) (0.0013) (0.0011)
Low WD, Single, Rich -0.1253 -0.0836 -0.1955 -0.1487
(0.0008) (0.0009) (0.0012) (0.0010)
High WD, Couple, Poor -0.1329 -0.0814 -0.2023 -0.1629
(0.0008) (0.0009) (0.0011) (0.0010)
High WD, Couple, Rich -0.1570 -0.1055 -0.2423 -0.1995
(0.0008) (0.0009) (0.0013) (0.0011)
High WD, Single, Poor -0.1082 -0.0718 -0.1675 -0.1249
(0.0010) (0.0009) (0.0015) (0.0012)
High WD, Single, Rich -0.1436 -0.1001 -0.2105 -0.1673
(0.0010) (0.0010) (0.0015) (0.0012)
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Table 10: Estimates: Transaction Costs (in utility terms)

Utility cost of transacting

Intercept  No car

Low WD, Couple, Poor 6.8509 1.7893
(0.0221)  (0.0029)
Low WD, Couple, Rich 6.6965 1.0742
(0.0221)  (0.0030)

Low WD, Single, Poor 6.7670 3.0771
(0.0185)  (0.0045)
Low WD, Single, Rich 6.8514 2.5729

(0.0209) (0.0031)
High WD, Couple, Poor 6.4970 0.7784
(0.0203)  (0.0036)
High WD, Couple, Rich 6.6843 0.1720
(0.0227)  (0.0045)
High WD, Single, Poor 6.2479 2.3367
(0.0192) (0.0066)
High WD, Single, Rich 6.5250 1.7912
(0.0216)  (0.0064)

Figure 9: The Effects of Varying the Fuel and Registration Tax Rates

(a) Total tax revenue (b) CO2 Emissions (¢) Social Surplus
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Note: All three panels have the same x and y axes, namely the tax rate for fuel and car registrations respectively,
normalized by the sample values so that the baseline outcomes occur at (1,1). The panels differ in terms of the
rotation and which outcome is on the z axis: tax revenue, CO2 emissions, and social surplus respectively. Social
surplus is the sum of consumer surplus and tax revenue, subtracting the external costs of driving (accidents,
congestion, etc.) including CO2 valued at $50/ton.

79



	Introduction
	Previous work on modeling automobile markets
	Equilibrium with Idiosyncratic Consumer Heterogeneity
	Key assumptions and restrictions
	Consumer states and choices
	Consumer dynamic choice model
	Equilibrium with idiosyncratic consumer heterogeneity
	Numerical implementation

	Equilibrium with Persistent Consumer Heterogeneity
	Time invariant heterogeneity
	Time varying and hybrid heterogeneity
	Illustrative example: sorting in stationary flow equilibrium

	Identification and Structural Estimation
	Maximum Likelihood Estimation
	Doubly nested fixed point (DNFXP) algorithm
	Model Identification
	Alternative estimation approaches

	Analysis of Danish Car Tax Policy
	Incorporating Driving
	Estimation Results and Model Fit 
	Counterfactual Policy Analysis 

	Conclusion
	Proofs
	Proof of Theorem 1 (page 24) 
	Proof of Theorem 2 (page 24) 
	Proof of Theorem 3 (page 26) 
	Proof of Theorem 6 (page 40) 

	Solving the Homogeneous Consumer Economy
	Likelihood when accidents are unobserved
	Notes on the identification of the model with driving
	Estimation details
	Data and Institutional Details
	Estimation


