
A Dynamic Model of Vehicle Ownership, Type

Choice, and Usage∗

Kenneth Gillingham, Yale University†

Fedor Iskhakov, University of New South Wales‡

Anders Munk-Nielsen, University of Copenhagen§

John Rust, Georgetown University¶

Bertel Schjerning, University of Copenhagen‖

September 2, 2015

Abstract
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1 Introduction

Government policies that affect durable goods inherently influence equilibria in both the new

and used markets. The presence of a secondary market may even lead to unintended conse-

quences. This is particularly true in the automobile market. For example, Corporate Average

Fuel Economy Standards in the United States can be expected to raise the price of new vehi-

cles and delay scrappage of older and often more polluting vehicles (Jacobsen, 2013). In other

countries, this effect is even more evident. In Denmark, the new vehicle registration tax nearly

triples the price of vehicles, disincentivizing new vehicle purchases and leading to a much older

fleet than would be expected given the high per capita income of the country.

There are important dynamic considerations in consumer decisions that mediate how poli-

cies affect the allocation of new and used durable goods. The stock of vehicles is persistent and

vehicles depreciate in value over time. Moreover, transaction costs lead to inertia in consumer

holdings due factors such as costly search or asymmetric information. These dynamic consider-

ations are particularly important for the welfare consequences of policies addressed to both the

primary and secondary markets.

This paper develops a tractable life-cycle model of vehicle ownership, vehicle choice, and us-

age. The model can for example be used to examine the effects of a proposed reform that reduces

the exceptionally high Danish vehicle registration tax and replaces it with road user charging,

in which drivers pay a tax based on the number of kilometers driven. We model the dynamic

considerations of the consumer in a framework that includes macroeconomic conditions, aging,

replacement, and scrappage. Using this framework, we study the non-stationary equilibrium

in the secondary market and can replicate the waves of vehicle prices and ownership decisions

corresponding to the business cycle that are observed in the data. We estimate our model using

detailed data from the Danish registers on all vehicles in Denmark and their odometer readings

matched to individual and household-level demographics. These data contain longitudinal in-

formation on income, wealth, labour market status, household composition, distance to work,

occupation, and family patterns, as well as information on all vehicle transactions and suggested

depreciation rates at the make-model-vintage level.

This paper contributes to several strands of the literature. The proposed policy affects the

vehicle market, a well-studied market in the economics literature, with significant work on prod-

uct differentiation and consumer choice of new vehicles (Bresnahan, 1981; Berry, Levinsohn and

Pakes, 1995; Goldberg, 1995; Petrin, 2002). These seminal papers allow for general patterns

of substitution across differentiated products, but do not model secondary markets or the dy-

namics of the consumer decision process. Economists have demonstrated the importance of

secondary markets for the allocation of new and used durable goods (Rust, 1985c; Anderson

and Ginsburgh, 1994; Hendel and Lizzeri, 1999a,b; Stolyarov, 2002; Gavazza, Lizzeri and Roket-

skiy, 2014), as well as the influence of durability on the dynamics of vehicle demand (Adda and

Cooper, 2000a; Stolyarov, 2002; Esteban and Shum, 2007; Chen, Esteban and Shum, 2013). This

paper models secondary markets and the dynamics of consumer decisions in the context of a

major proposed policy reform using impressively detailed household-level data. Schiraldi (2011)

models the consumer’s dynamic decision process to estimate transaction costs and the effects

of a counterfactual scrappage subsidy in Italy, but does not model counterfactual equilibrium
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prices in new and used vehicle markets.

Since Berkovec (1985) economists have estimated numerical equilibria in new and used vehicle

markets. Rust (1985c) estimates a stationary equilibrium in new and used vehicle markets with

an equilibrium price function that matches the distribution of supply with the distribution of

demand. Konishi and Sandfort (2002) prove the existence of a stationary equilibrium in the

presence of transaction and trading costs. Stolyarov (2002) and Gavazza, Lizzeri and Roketskiy

(2014) estimate stationary equilibria with transaction costs that match several key features of the

U.S. automobile market. One key assumption in these papers is a discrete uniform distribution

of vehicles in each age cohort. Adda and Cooper (2000b) demonstrate that the age distribution is

non-stationary: macroeconomic shocks and gasoline price shocks create “echo effects” or “waves”

in the age distribution. We model equilibria in the automobile market that is a function of both

macroeconomic conditions and gasoline prices, allowing us to capture these waves in the age

distribution of vehicles.

By examining the welfare effects of a key policy reform, our paper also contributes to the

literature examining environmental policies in vehicle market. For example, Bento, Goulder,

Jacobsen and von Haefen (2009) use a static model of consumer demand and a Bertrand oligopoly

model for automobile supply to examine the welfare and distribution effects of vehicle taxes in

the United States. Jacobsen (2013) builds on this modeling framework to examine the effects

of Corporate Average Fuel Economy Standards in the United States. These papers model

both vehicle choice and usage decisions to provide useful policy insight, but abstract from the

intertemporal dependence of consumer decisions. Our paper also uses more comprehensive data

that allows us to model the impact of macroeconomic conditions on the vehicle purchase decision.

Gillingham (2012) develops a two-period vehicle choice and usage model to examine the effects

of gasoline taxes and policies that change the price of new vehicles. The focus in Gillingham

(2012) is on estimating the rebound effect, i.e., the additional driving in response to a policy

that raises fuel economy. A major contribution of our paper is that it develops a tractable model

of dynamic consumer choice to estimate primitives that allow us to simulate the counterfactual

equilibrium and accordingly, the effects of an important policy reform that is actually being

considered.

There are a number of attractive features of our approach for examining the effects of the

proposed reform. First and most importantly, the structural parameters have a clear inter-

pretation from the theoretical model, allowing for counterfactual simulations to examine the

welfare effects of the proposed reform. Our data allow us to obtain aggregate demand for vehi-

cle investments, fuel consumption, and usage by aggregating individual demands resulting from

consumer dynamic optimizing behavior. Furthermore, our empirical setting and data contain

several reforms that provide plausibly exogenous variation to identify our structural parameters.

We find that our model can not only replicate waves in the observed data due to business

cycles, but can rationalize the vehicle choice and usage behavior in Denmark. We conduct a

simple counterfactual experiment of a reform that reduces the new car prices and raises fuel

prices. The simulations show that both the model with and without equilibrium prices predict

a shift towards younger cars. However, in the equilibrium-version, this shift occurs at the

cost of accelerated scrappage of the older cars. This behavior is driven by the equilibrium
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prices; without equilibrium prices, the reform increases shifts demand towards newer cars for all

households, regardless of which car they currently own. When prices adjust to equate demand

and supply, demand will drop relatively more for cars ages that are abundant. Thus, the counter-

movements of equilibrium prices imply that the demand-response to the reform will depend on

the individual household’s car state as well as the aggregate car stock. In the simulation we see

a large group of old vintages where the reform depresses prices for those car ages so much that

it leads to a spike in scrappage. This is the type of behavior that is documented empirically by

e.g. Jacobsen (2013). The ability to study the interplay between car taxation, the car stock and

the macro cycle is a primary innovation of this model.

The remainder of the paper is structured as follows. The next section provides background

on the institutional setting and discusses our dataset. Section 3 develops our dynamic model

of consumer purchase, vehicle type, replacement, and usage choices. Section 4 discusses our

estimation approach and the data. Section 5 describes how we solve for the non-stationary

equilibrium. Section 6 presents our results and Section 7 concludes.

2 Background and Data

This section provides background on the relevant policy questions that this model was designed

to address, and describes the data we use to estimate the model, and provides a deeper review

of the literature we built upon, highlighting the new contributions in this thesis. Section 2.1

summarizes the institutional setting in Denmark and several significant policy changes that

occurred during our sample period. Sections 2.2 and 2.3 discuss the data sources used to

estimate the model and provides a descriptive summary of the main features of the data we

hope to capture in our model. Finally section 2.4 provides a fuller review of four separate

literatures our model builds upon and was inspired by, and summarizes the areas where we

contribute to each of them.

2.1 Institutional Setting

Denmark provides a very useful empirical setting for examining policies that affect the new

vehicle registration tax and the operating cost per kilometer driven. Vehicle taxation in Denmark

currently is made up three components: a one-time registration tax when the vehicle first enters

the Danish fleet, an annual tax, and fuel taxes. The registration tax is a very large proportional

tax with a kink, where various deductions apply.1 For example, in 2010 the tax was 105 percent

of the first DKK 79,000 (about $14,500) and 180 percent of the portion of the price exceeding

the kink at DKK 79,000. The kink changes over time but the rates of 105 percent and 180

percent have remained stable.

There have been numerous changes over time in the registration tax, that provide exogenous

variation to help us identify our structural primitives. There have been three reforms from

1992 to the present with an increasing focus on creating incentives for households to purchase

more fuel efficient vehicles. Data on the fuel efficiency of new vehicles is available from the first

1Examples of deductions include a reduction of the taxable value of the vehicle of DKK 3,750 if ABS brakes
are installed and a reduction of DKK 12,000 from the final tax if the vehicle drives 19 to 20 km per litre of gas.
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reform in 1997. This reform set the annual tax for all vehicles first registered prior to July 1,

1997 according to the weight of the vehicle. At the same time, it set the annual tax for all

vehicles registered after July 1, 1997 according to the fuel economy of the vehicle (in kilometers

per liter). The motivation behind this reform was to tax older vehicles for wear and tear on the

road and incentivize households to purchase more fuel-efficient new cars.

In 2000, deductions in the registration tax were introduced for vehicles in the higher end of

the fuel efficiency scale (above 25 km/l). Therefore, only a very limited fraction of the vehicles

sold in that year were actually affected by the reform. In the 2007 reform, these deductions were

expanded so that all vehicles have their registration tax depend on fuel efficiency according to

a piecewise linear schedule. If the vehicle has a fuel efficiency (FE) of more than 16 km/l, it

receives a deduction of 4,000(FE−16), and if it has a fuel economy less than 16 km/l, the tax

is increased by 1,000(16−FE). Not surprisingly we see a very strong response at the extremes:

The market share of the most fuel efficient cars increased from 8.1 percent prior to the reform

to 50.4 percent at the end of the period in 2011 whereas for cars driving 16.6 km/l or less it

decreased from 71.3 percent to 19.4 percent.

The Danish Ministry of the Environment pays out a scrappage subsidy for cars that are

scrapped in an environmentally sound way by an authorized scrap yard. The subsidy was put

in place on July 1st, 2000, and amounts to 1,500 DKK.

2.2 Data

The dataset used in this paper draws on many different Danish sources. At the core of the dataset

is information on the fleet of vehicles registered in Denmark is available from Statistics Denmark

in the database bildata. The main source for the database is the Central Register of Motor

Vehicles. The database keeps track of nearly all vehicles in Denmark and in particular all private

personal vehicles.2 For each vehicle we have the motor register’s vehicle identification number

(VIN) and the owner’s CPR number, which uniquely identifies all individuals in Denmark.3 This

register not only contains basic vehicle information, but also allows us to track ownership over

individual vehicles over time.

Socioeconomic data for the owners of vehicles comes from various Danish registers. These

contain the full Danish population in each year with the exception of Danes living abroad. The

CPR number is given to any individual taking residence for longer than 3 months in Denmark (6

months for Nordic or EU citizens) and is used in nearly all dealings with official authorities from

education and taxation to the purchase of medicine and criminal records. Thus, the dataset

includes detailed educational information, place of residence and time of movements, income

and wealth information from the tax report (which for most employees is 3rd party reported).

We merge in information on spouses and children to give an adequate picture of the household.

Another important vehicle register dataset contains information on the vehicle tests per-

2Exceptions that are not included in the register include for example company cars and military vehicles. For
company cars, we instead observe a tax variable indicating whether an individual has access to a company car
that can be used privately. This is the case for 3.4% of Danish households.

3Note that the VIN found on American vehicles differs from our VIN; in the US, the VIN can be used to
back out much information about the car manufacturer etc. We also have access to the first 11 characters of the
VIN number but we have found this variable to be unreliable in our dataset, inconsistent over time and many
observations having VINs we cannot justify based on online databases.
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formed by the Danish Ministry of Transportation (MOT). There are three main types of tests,

with the goal of ensuring that vehicles in Denmark are safe to drive. A registration test is per-

formed when the vehicle is registered. Periodic tests are performed bi-annually from the fourth

year since the car was registered and the rest of its lifespan. Customs tests are performed on

imported used vehicles prior to their registration test when they are registered in Denmark. The

most important variable from the MOT tests is the odometer reading, which allows us to track

the usage of individual vehicles. Using the VIN, these odometer readings are merged with the

vehicle register database. Note that for the first observation of a given VIN at a test, we assume

that the odometer was at zero when the car was originally purchased. There are two possible

exceptions to this; if the car was taken for test drives prior to the purchase, then that will have

taken prior to the first registration, which occurs when the car is purchased from the dealer and

registered to the consumer. The second is if the car was imported, which relates to the following

data issue.

One shortcoming of the vehicle data is that we do not observe the make year of the vehicle.

Instead, we only observe the date of the first registration in Denmark. This means that if a

used car has been imported, we are incorrectly classifying it as a zero year old car. However,

imported used cars must also pay the Danish registration tax, which means that the net-of-tax

new and used car prices in Denmark are generally lower than in other European countries (see

Figure B.4). Therefore, importing of cars is not

Finally, the Danish Automobile Association (DAF) maintains a database of prices of vehicles

by make, model, variant, year and vintage, allowing us to follow the value of used cars as well.

The main limitation of these data is that we do not observe what additional equipment was

purchased with the car. However, DAF does provide an informed guess of the typical price,

as well as a high and low price, bounding the price range for that specific vehicle. DAF also

provides the price a professional car dealer would pay and the price he would demand for a given

vehicle, giving a proposed margin. The prices are highly reliable and are used by professional

car dealers in setting the price of a used vehicle.

We define scrappage in our data as having occured when a car’s ownership spell ends and

we do not observe a new one starting. The car may have been exported out of the country

although exports are generally not a large concern because the high taxes in Denmark mean

that used-car prices are fairly high internationally. We observe quite low scrappage rates in the

first two sample years, 1996 and 1997, so to validate our data in terms of scrappage, we can

compare the scrap rates to data on the number of scrappage subsidies paid out.4 We will discuss

this issue in greater detail later.

2.3 Descriptives

We will now present some key descriptives for our estimation sample. We will focus on the main

variables to be incorporated in the model, namely car characteristics, fuel prices, car ownership

by household age and income and the discrete choices made by households.

The most important piece of descriptive evidence for this paper is the “waves” in the car age

distribution shown in Figure 2.1. The waves appear as newly purchased cars travel through the

4The data is available on the website www.bilordning.dk (accessed March, 2015).
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Figure 2.1: Car Age Distribution Over Time: “Waves”

age distribution of cars over time as they age. It is well-known that new car sales is one of the

most volatile components of GDP, clearly showing the business cycle. Along the axis of calendar

time for car age zero, we see the new car sales increasing in the boom in the lage 90s, staying

low during the brief recession in 2001–2003 before then again increasing in the following boom

up towards the financial crisis. Then, as time moves forward these purchases travel through the

age distribution along the diagonal, until they begin to die out as the car age approaches 20 and

cars start to be scrapped.

While Figure 2.1 shows the car age distribution, this is not necessarily informative about

how much trading takes place along the waves; it might be that the same owner holds on to a

given car for its entire lifetime or that they are traded. Figure 2.2 show the number of purchases

for a car of a given age in a given year. Firstly, we see that new car sales dwarf any of the

other age groups, as would be expected. Secondly, we see the macro state clearly in the new car

purchases since car sales are highly pro-cyclical. This fact is a key motivation for our modeling

strategy; the macro shocks drive the new car sales which then travel through the age distribution

as “waves”. Thirdly, we see that the waves can also be seen in the transactions, meaning that

we see more trading for cars that are more abundant. This becomes more clear if we remove

the new car sales from Figure 2.2, which we have done in Figure B.5.

Table F.2 provides summary statistics for key variables in the full dataset. In our empirical

analysis, we will be aggregating to only two car types: gasoline and diesel cars. To construct

the choice set, we aggregate the characteristics of the underlying cars by taking un-weighted

averages within each of the two car types. Figure 2.3 shows the new car price in 2005 DKK and

fuel efficiency in km/liter for the two types over the sample period. The figure shows that the

new car prices have converged; a diesel car cost 15.5% more than a gasoline car in 1996, which

had fallen to 1.6% by 2009. At the same time, the average fuel efficiency has increased relatively

more for diesel cars than for gasoline cars.

Figure B.1 shows the real price of gasoline and diesel over time. Prices have been increasing

for both types of fuel but we also note that hte two prices appear to have converged over time.

Figures B.2 and B.3 demonstrate how the composition of the fuel prices have changed over time,

which shows that the changes have mainly been driven by the product prices; fuel taxes were
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increased slightly in 1996 and 2000 but were otherwise kept constant (i.e. the fixed part was

kept constant and the proportional tax rate was not changed).

Our dataset allows us to paint a very complete picture of car ownership over the life cycle

and for the full household. We will focus the number of cars owned and how it relates to

household age and income. First, note that only 12.1% of the households in our sample owns

more than 1 car (Table B.1). This is very low compared to the US but makes sense in light of

the very high car prices (see Figure B.4). From 1996 to 2009, the share of no-car households has

decreased from 49.1% to 37.2%, and the share of two-car households has also increased (from

6.3% to 14.4%). Like most of the famous models of car choice, our model will be a single-car

model, which does not seem to be as critical given the fairly low share of multi-car households.

However, since a major focus of this paper is to model the equilibrium of the used-car market,

we do not wish to simply drop all these observations. Instead, we choose to treat multi-car

households as independent decision-making units; when a household purchases an extra car, we

create two observations for that year, where one keeps the original car and the other is counted

as a household entering from the no-car state. The two observations will split the household

income equally to ensure that the total amount of resources in the economy remains stable.5

Figure 2.4 shows the number of cars owned by the household age (defined as the male’s age

for couples). The figure shows that the ownership rate increases rapidly up through the 20s and

then flattens by the late 30s where around 70% of households owning at least one car. As the

household approaches retirement age, the share of no-car households increases somewhat and it

appears that some 2-car households sell of one of their cars.

Next, we consider how car ownership varies with the income of the household. Figure 2.5

shows for each income decile, the percent of households owning zero, one, two or more than two

cars. As expected, higher income is associated with a higher probability, and for incomes above

the median, the share in the one-car category decreases as households start to be able to afford

having more than one car.

5If the household once again becomes a one-car household, then the extra observation will count in the final
year as having sold to go to the no-car state and will be deleted from future time periods.
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Figure 2.6: Discrete Choice by Income Decile

We now consider the discrete car ownership choices that will be relevant to our model. If

households own no car, they can choose to remain in the no-car state. If they have a car, they

can either keep it, sell it or replace it. Recall that if they choose to buy an additional car, we will

treat them as an additional household coming into the sample. Figure 2.6 shows for each income

decile, the fraction of households choosing each of these discrete choices. Firstly, we see that

over 80% of households in lowest income decile choose to remain in the no-car state and that this

decreases to less than 10% for the highest income decile. Similarly, the probabilities of keeping

and replacing the existing car increases. The probability of selling the car and going to the

no-car state remains low throughout. Given that household income rises over the the life cycle,

it is not possible from Figure 2.4 and 2.5 alone to determine whether the most important drivers

are related to household age (e.g. the presence of children) or income (e.g. leisure activities or

work).

We now take the perspective of the cars being purchased. Figure 2.7 illustrates how long

10



0
5

10
15

Ye
ar

s 
of

 o
w

ne
rs

hi
p

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Age of Car at Purchase

Figure 2.7: Years of Ownership by Car Age at Purchase

households hold their purchased car conditional on the car age at the time of purchase. For each

ownership spell where the car was a years old at the time of purchase, we show the distribution

of the lengths of the ownership spells. As expected, the figure shows that when a household

purchases a young car, they tend to hold it for longer. Interestingly, the holding times go up

after age 22; this is most likely due to the selection effect of vintage or specialty cars not being

scrapped.

Finally, we show the scrappage in the data over time. Figure 2.8 shows scrappage by car

age; we have pooled the sample and computed for each car age, the pct. of all cars at that

age that are scrapped. Note that we truncate car age at 24, which is the maximum age used

in the model. The figure shows that the mode of car scrappage occurs at car age 22, after

which scrappage declines somewhat. This is most likely due to a selection effect where specialty

or vintage cars are kept very long while normal cars are scrapped earlier. We also note that

scrappage is markedly higher in even years; this coincides with the test years. In other words,

the pattern is consistent with an individual taking his car to the inspection test and deciding to

scrap the car if it fails the inspection and is deemed unfit to drive. Figure ?? further shows that

there is still considerable trading activity for the higher age groups; around a third of all ending

ownerships are terminated in a transaction rather than a scrappage for the highest age groups.

Figure 2.9 shows the number of cars being scrapped in each year by the car age. When

compared to the waves in Figure 2.1, we can see the scrappage spike in 2000–2005 as being

explained by cars from the boom in the 1980s being scrapped and that wave dying out in the

car age distribution. An important feature of the data that becomes clear from Figure 2.9 is

that the age distribution changes; so while Table B.2 indicates that the number of cars being

scrapped each year is relatively stable over time, this masks the fact that the age composition of

cars being scrapped in the late 200s is quite different from the ones being scrapped in the early

2000s, with younger cars being scrapped later.

In Appendix B.3, we go into more details about our scrappage data. Most importantly, we

find too low scrap rates for 1996 and 1997 for that data to be believed (Table B.2). This means

that we are only seeing a very small number of ownership periods ending prior to this. However,
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from 1999 the rate appears to be on par with the remainder of the period. We have been unable

to discover the cause of this oddity in the data but we choose to use the data from 1999 and

onwards.

We conclude the descriptive section by discussing some correlations between VKT and the

state variables. Figure B.10 shows the VKT by the age of the car. The graph shows that driving

is highest for four year old cars (just over 55 km per day on average) and then declines almost

linearly towards the 20 year old cars, that are driven just over 35 km per day on average. This

unconditional relationship might reflect a number of other factors correlated with the car age.

Figure B.11 shows the corresponding graph with real income instead of the car age. The figure

indicates that driving increases in income for the largest part of the data but decreases for very

high income levels. Table B.3 shows regressions of VKT on different sets of controls for the

full sample. We find very large price sensitivities, unless we control for a diesel dummy in the

driving equation. Gillingham and Munk-Nielsen (2015) provide evidence that diesel drivers tend

to drive much more and be more price responsive than gasoline car drivers.

2.4 Previous literature

This paper builds on and contributes to four different literatures: 1) a literature on discrete/continuous

choice of durable goods, where there is a discrete choice of type of durable (including attributes

such as the durable’s energy efficiency) and where the continuous choice represents usage of the

durable (such as driving in the case of automobiles), 2) a literature on numerical and theoretical

models of equilibrium in automobile markets, and 3) a literature on structural estimation of dy-

namic choice models, including dynamic discrete choice models applied to choice of automobiles.

We provide reviews of each of these literatures below. Most of these literatures emerged after

the oil price shocks and concern about permanently higher fuel prices in the late 1970s. Since

that time fuel prices have increased but not as dramatically as once feared. Instead attention has

refocused more recently on concerns about the effects of vehicle emissions on the environment,

with particular concern about CO2 emissions and its impact on global warming.

2.4.1 Discrete-continuous Models of Durables

This literature goes back to Dubin and McFadden (1984), where households choose electrical

appliances taking into account their future usage of the durable. The key insight is that the

usage falls out of Roy’s identity. Models of this type place strict cross-equation restrictions on

the parameters of the model in the sense that they force the consumer to be time-consistent in

treating money in the same way when making the purchase decision and the usage decision.6

Earlier work on discrete-continuous choice models tended to use two-step approaches (Mannering

and Winston, 1985; Goldberg, 1998; West, 2004). More recently, applications to car choice and

usage have featured simultaneous estimation of both choice margins (Feng, Fullerton and Gan,

2005; Bento, Goulder, Jacobsen and von Haefen, 2009; Jacobsen, 2013). For example, Bento,

Goulder, Jacobsen and von Haefen (2009) use their model to analyze the distributional impacts

of fuel taxes in the US. In their model, the discrete choice is the car choice and the continuous

6Whether consumers accurately take into account future savings in fuel costs is widely discussed in recent
empirical work (Allcott and Wozny, 2012; Busse, Knittel and Zettelmeyer, 2013).
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choice is how much to drive the car. Gillingham (2012) also uses a discrete-continuous model

applied to car choice and use and focuses on the selection of consumers based on anticipated

driving and allowing for selection on observed and unobserved factors. Munk-Nielsen (2015)

applies a similar model to new car sales in Denmark to study the costs of environmental taxation.

The model admits an estimate of the so-called “rebound effect”, the effect on driving from an

exogenous increase in fuel efficiency. This important policy parameter has been widely discussed

and estimated (e.g. Small and Van Dender, 2007; Hymel and Small, 2015).

Engers, Hartmann and Stern (2009) study the interrelationship between vehicle usage and

price depreciation in the used car market. They argue that “changes in a vehicles net benefits,

proxied by annual miles, explain the observed decline in used car prices over the vehicle’s life.”

(p. 29). They find that households drive fewer miles per year the older their car is, and estimate

a structural model of household choice of driving and vehicle type that differs from the literature

surveyed above. They conclude that “the structural model of household mileage decisions better

explains the observed price decline in used car prices.” and “the observed decline in used car

prices as a vehicle ages is best explained by decomposing the age effect into three components:

the direct aging effect, the household portfolio effect, and the household demographics (or car

turnover) effect.” (p. 30).

2.4.2 Models of Equilibrium in Automobile Markets

This paper builds on a theoretical and empirical literature for modeling equilibrium in the

market for automobiles. The earliest work that we are aware was by Manski (see Manski

(1980), Manski and Sherman (1980) and Manski (1983)). We believe Manski’s original work

stimulated the subsequent chain of research on micro-econometrically estimable equilibrium

models of the automobile market, and his work provided both theoretical models of equilibrium in

new and secondhand auto markets, and numerical calculation of equilibrium prices and quantities

that demonstrated how these models could be used for policy forecasting of a wide range of

policies of interest. Manski and Sherman (1980) did their pioneering work in an environment

around the first large oil price shocks in the late 1970s when it first became clear that gasoline

prices would inevitably rise and there would be a demand for increasingly fuel efficient vehicles.

They concluded that “our initial research on developing and applying a disaggregate modeling

approach to forecasting future motor-vehicle sales and holdings has proved highly encouraging.

Our results are really the beginning of an ongoing need to analyze and monitor the motor

vehicle market through the 1980s. . . . With an eye toward improvement of our models, future

work should seek to further illuminate the linkages that connect household behavior in choosing

motor vehicles and other vehicle-related decisions. In particular, a joint analysis of ownership

level, the composition of holdings, and vehicle use would be a valuable contribution.” (p. 103).

The contributions of Manski and coauthors inspired further work such as the 1983 PhD thesis

research by James A. Berkovec at MIT (subsequently published as Berkovec (1985)) who followed

the footsteps of Manski and Sherman (1980) and developed the second microeconometrically

estimated and numerically solved large scale equilibrium model of the new and used car markets

that we are aware of. The contributions of Manski and coauthors, and Berkovec was extremely

advanced given the limits of computing power at the time, and still represents the closest point
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of departure and template for our own work in this area.

Berkovec described his model as a “short run” equilibrium model as it was based on a

model where consumer expectations about depreciation rates of their vehicles was estimated

econometrically using data on new and used car prices in 1978. Berkovec assumed that consumers

choose vehicles based on a quasi-linear utility function that is an additively separable sum of

a utility for car attributes (with declining utility for cars of older ages) less the disutility of

the “expected capital cost” of owning the vehicle. The expected capital cost is essentially the

expected depreciation of holding the vehicle plus maintenance costs, using the econometrically

estimated depreciation rates.

Berkovec assumed that consumers choose a vehicle that maximizes their utility where the

price of the vehicle enters via the expected capital cost. He used a nested logit discrete choice

model that allow for patterns of correlation in the unobserved components of the utility of a

vehicle that capture patterns of similarity in the unobserved characteristics of vehicles in 13

different car classes that he used in his analysis (e.g. luxury cars, compact cars, vans, pickups,

etc). He developed and estimated separate microeconometric nested logit discrete choice models

for households that own 1, 2 and 3 cars, respectively.

Using the microeconometrically estimated choice model, Berkovec constructed an “expected

demand function” for vehicles of different ages and classes by summing the estimated discrete

choice probabilities for cars of each age and class. He defined an equilibrium to be a vector of

prices (with one price for each possible age and price of car) that equates the expected demand

for vehicles of each car age and type to the actual supply of such vehicles, net of scrappage.

Berkovec used a probabilistic model of vehicle scrappage due to Manski and Goldin (1983)

where the probability a vehicle is scrapped is a decreasing function of the difference between the

second-hand price of the car (net of any repair costs) and an exogenously specified scrap value

for the vehicle. This implies that, except for random accidents, there is very little chance that

new cars are scrapped, but the probability a used car is scrapped increases monotonically with

the age of the car.

Berkovec used Newton’s method to compute the equilibrium prices in the market. For the

problem he analyzed there were 131 vehicle class/age price categories. At the time Berkovec did

his work, inversion of the 131× 131 Jacobian matrix of excess demands necessary to implement

Newton’s method was a much bigger computational challenge than it is today. Berkovec showed

that the Jacobian matrix had special structure he called “identity outer product” that enabled

him to invert the Jacobian via inverting a smaller 48 × 48 matrix and doing some additional

matrix vector multiplications. Though Berkovec’s paper did not discuss the equilibrium prices

implied by his model, he concluded that “Overall, the simulation model forecasts appear to do

reasonably well for the 1978- 1982 period. Although there are discrepancies in specific areas

(as would be expected because of underlying macroeconomic fluctuations), the general trends

evident in the data would seem to be captured in the forecasts.” (Berkovec (1985), p. 213).

Subsequent work on empirical equilibrium models of the automobile market includes Bento,

Goulder, Jacobsen and von Haefen (2009) who estimated a micro level discrete/continuous model

of automobile driving and model/age choice using a sample of 20,429 U.S. households from

the 2001 National Transportation Survey. Using microaggregated demands from the estimated
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discrete choice model, they numerically solved for equilibrium in the new and used car markets

for a total of 284 composite age/model vehicle classes. They used their model to predict the

impact of a 25 cent increase in the U.S. gasoline tax. Their model predicts that most of the

response to this tax increase is via reduced driving: they found negligible longer run substitution

to more fuel efficient vehicles or to non-automobile modes of transportation: “the size of the

vehicle fleet falls about 0.5 percent” but “The impacts on new and used car ownership differ

substantially over time. In the first year of the policy, the reduction in vehicle ownership comes

largely by way of a decline in new car purchases. However, the ratio of fuel economy of new to

old vehicles increases over time, and the increased gasoline tax gives greater importance to fuel

economy. As a result, the decline in new car ownership is attenuated over time, and by year 10

the reduction in car ownership applies nearly uniformly to new and used vehicles.” (p. 697).

A separate more theoretically oriented thread of the literature focused on modeling the role

and benefits of the secondary market for automobiles (or more generally for other durable goods)

in frameworks where the dynamics of trading were more explicitly modeled relative to the work

surveyed above. Rust (1985c) established the existence of a stationary equilibrium in a market for

new and used durable assets that provided a theoretical rationale for the conditions under which

consumer choice of a stochastically deteriorating durable good (e.g. an automobile) involves a

trade-off between the utility provided by the durable and its expected price depreciation. He

showed that the key condition for this to hold is that there are zero transactions costs in the

market. When this holds, the optimal strategy for each consumer in a stationary equilibrium

(i.e. one where there are no macro shocks or other time-varying factors altering the prices or

quantities of vehicles in the market) involves trading each period for the preferred age/condition

of car x∗(τ) where τ is a parameter that indexes heterogeneity among consumers, e.g. differential

preferences for “newness” or different degrees of wealth that affect consumer willingness to

pay for newer/better condition durables. Similar to Berkovec, Rust assumed that per period

preferences for durables are quasi-linear in the attributes of the durable and in income, which is

a simple way of representing preferences for all other goods without explicitly modeling them.

Unlike Berkovec, who considered a discrete set of car classes and ages, Rust modeled a

durable as having a state x, where x = 0 corresponds to a brand new durable good and higher

values of x correspond to more deteriorated, less desirable older durable goods. For example

in the case of automobiles, x might be the odometer on the car, and consumers may be more

concerned about the level of wear/tear on a car as represented by the odometer value x than

the discrete age of the car. In this framework an equilibrium requires finding a price function

P (x) that clears the market (i.e. sets the demand for durables of each condition x equal to

the supply). The supply of durables is represented by another function S(x) that Rust called

a holdings distribution — it is the fraction of durables in the economy with condition less than

or equal to x. If each vehicle deteriorates stochastically, according to a Markov transition

probability f(x′|x) (where x′ is the condition of the durable next period given that its condition

is x this period), then in a stationary equilibrium with a continuum of agents, Rust showed that

there will be a stationary distribution S(x) that is related to the invariant distribution of the

Markov transition probability f(x′|x).

Rust assumed that there was an infinitely elastic supply of new durables at an exogenously
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fixed price P and an infinitely elastic demand for scrap at an exogenously fixed price P < P ,

and provided sufficient conditions for a stationary equilibrium (P (x), S(x)) that satisfies the

conditions 1) P (0) = P , 2) there is a scrap threshold γ > 0 such that P (x) = P if x ≥ γ, and

3) there is equilibrium for all conditions x ∈ (0, γ), i.e. the fraction of consumers who wish to

hold a durable with condition less than or equal to x equals the stationary holdings distribution

S(x). Rust called condition 3) stock equilibrium i.e. it amounts to the usual condition that the

demand for every condition of car equals the supply in the case of a continuum of goods x. Rust

also showed that a stationary equilibrium also implies a condition he called flow equilibrium i.e.

the fraction of used durables that are scrapped each period equals the fraction of the population

that buys new durables. This implies that the overall stock of durables in the economy is not

changing over time.

In subsequent work Rust (1985a) showed that when applied to the automobile market, a

calibrated version of the stationary holdings distribution implied by Rust (1985c) provides a

good approximation to the joint distribution of ages and odometer values (x) in the US economy

using data from the 1970s. He also showed that for a range of plausible utility functions for

consumers, the stationary equilibrium resulted in convex price functions P (x), which implies the

rapid early depreciation for new cars and the slower depreciation for older cars that we observe in

most auto markets. However the assumption of zero transactions costs is an unrealistic feature of

his model as it implies that it is optimal for consumers to trade every period for their preferred

condition x∗(τ) and this is something we definitely do not observe in real world automobile

markets. When there are transactions costs (which are separate from trading costs, i.e. the

difference between the list price of a car x a consumer wishes to buy, P (x) and the list price

P (x′) of an older car x′ that the consumer wishes to trade in exchange for the newer car x),

Rust (1985c) showed that the optimal strategy generally involves keeping the current durable

for multiple periods. In a stationary market the optimal trading strategy in the presence of

transactions costs consists of two thresholds (x∗(τ), x∗(τ)) where x∗(τ) < x∗(τ) and x∗(τ) is

the condition of the optimal replacement durable that a consumer will choose whenever he/she

replaces their current durable x, but x∗(τ) is a selling threshold and it is not optimal to replace

the current durable x until x exceeds the selling threshold x∗(τ). When x > x∗(τ) the consumer

of type τ sells their current durable x for P (x) and buys a replacement durable of condition x∗(τ)

for price P (x∗(τ)). Notice that generally x∗(τ) > 0, so the replacement durable is generally not

a brand new durable good x∗(τ) = 0. However consumers who are sufficiently rich or who have

a sufficiently strong preference for “newness” will replace their used durable with a brand new

one.

Establishing the existence of a stationary equilibrium in the presence of transactions costs

is a much more daunting undertaking due to the possibility that there may be consumer types

τ who desire to buy a slightly used but not completely brand new durable x∗(τ) yet, there

may not be any consumer type τ ′ whose optimal strategy involves buying a brand new durable

whenever they replace their old one who has a selling threshold x∗(τ ′) < x∗(τ). That is, there

is no automatic guarantee that there will be someone willing to sell a sufficiently new durable

good to another consumer who wishes to buy a very new but not brand new durable good —

perhaps to try to take advantage of the the rapid early depreciation in durables and buy an
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“almost new” durable good for a price that is much lower than the price of a new durable good

P . However Konishi and Sandfort (2002) did prove that a stationary equilibrium can exist in

the presence of transactions costs under certain conditions. Their proof shows that it is possible

for the equilibrium price function P (x) to adjust to prevent any of the coordination failures of

the type discussed above, i.e. where some consumer type τ ′ wishes to buy some sufficiently new

durable good x∗(τ ′) but no other consumer type τ is willing to sell their used durable to that

consumer.

There is also a growing literature on the interaction between the market for new and used

durable goods. Generally, the secondary market increases the lifetime of a durable good by

facilitating a string of trades from customers who prefer newer durables and sell to a sequence of

customers who are either poorer or who have weaker preferences for new durable goods relative

to older ones. If the secondary market does not exist, each consumer can of course simply “buy

and hold” — that is, buy brand new durable goods and hold them until they decide to scrap the

old one and then buy another brand new replacement. Rust (1985c) showed that if consumers are

homogeneous, they are indifferent between following such a buy an hold strategy, or trading each

period for a preferred durable good in the secondary market. Thus, the existence of a secondary

market does not produce any net welfare gain when consumers are homogeneous. However if

consumers are heterogeneous, there is a welfare gain from the existence of a secondary market,

and durable goods will have a longer lifespan on average when there is a secondary market than

when it does not exist. Intuitively, the secondary market enables a chain of “hand me downs”

of an aging durable good that would not be possible in the absence of a secondary market, and

hence durables will live longer before they are scrapped when a secondary market exists, and

consumers will be strictly better off compared to situation where there is no secondary market.

In fact, Figure B.6 indicates that the most common a 15 year old car is to have had five owners.

However a secondary market is not necessarily desired by producers of new durable goods,

because it allows consumers to keep used durable goods longer. Since used durable goods serve

as a substitute for new durable goods, the existence of a secondary market limits a firm’s ability

to extract rents from consumers via sales of new durable goods, i.e. in the “primary market.”

A standard solution to this problem is, in the case of a monopolist producer of durable goods,

for the monopolist to rent rather than sell durable goods. Then the monopolist has the ability

to control when durables are scrapped and extract rents from consumers without the distortions

caused when durables are sold. When a monopolist sells new durables but attempts to set a high

price, consumers react by keeping their used durables longer to reduce how frequently they have

to replace their durables and thus pay the high price to the monopolist. However if a limitation

to rental contracts only is not feasible, Rust (1985d) showed that a monopolist producer of new

durable goods has an incentive to limit competition provided by the existence of a market for

used durable goods by engaging in “planned obsolescence” — i.e. selling new durable goods that

deteriorate more quickly than would be optimal under a social planning solution. In extreme

cases the monopolist might even find it optimal to kill off the secondary market by producing

goods with zero durability.

Esteban and Shum (2007) and Chen, Esteban and Shum (2013) developed empirically im-

plementable models of equilibrium in new and used automobile markets and used these models
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to study the effect of the existence of a secondary market on oligopoly competition between new

car producers in the primary market. Esteban and Shum (2007) formulated a model of oligopoly

competition in new car markets under the assumption that a secondary market exists and there

are zero transactions costs. Under their assumptions, demand for various new car models are

linear functions of price, and the firms’ profit functions are quadratic functions of current and

future production levels, which implies that a Markov perfect equilibrium exists in strategies

that specify the auto companies’ production quantity decisions that are linear functions of a

vector of the stock of cars produced prior to the current period that are still traded in secondary

markets. Though the authors reported “difficulty of the theoretical model in generating price

patterns similar to those observed in the data” (p. 345), they are able to use their model to

study the effect of a temporary elimination of the secondary market on production decisions

in the new car market. “Overall, we find that aggregate new-car production would increase by

12.08% for the 1987–1990 time frame were the secondary market to disappear temporarily.” (p.

349).

Chen, Esteban and Shum (2013) estimated a model of dynamic oligopolistic competition

in the new car market allowing for the existence of a secondary market in each car brand

(make/model) sold in the primary market, and allowing for the possibility of positive transactions

costs. Their econometrically estimated transaction cost was $4,400, and they note that “This is

corroborated by the Kelley Blue Book, which indicates that, typically, the difference between the

trade-in value of a used car (seller’s price for consumers) and its suggested retail value (buyer’s

price) — which may serve as a proxy for the transactions cost — is in the $3,000 to $4,000 range.”

(p. 2922). They conduct counterfactual experiments by varying the transactions cost parameter

from a value large enough to result in the closure of all secondary markets (for transactions

costs larger than $8,000), to a value of $0, which corresponds to the case of a “frictionless” and

active secondary market with no transactions costs. They find that relative to the equilibrium

where there are no secondary markets, the case where there are active secondary markets with

no transactions costs lowers firms’ profits in the primary market by 35 percent. They also find

that “when the secondary market becomes more active, firms have a stronger incentive to make

their cars less durable.” (p. 2929).

The final study on equilibrium in automobile markets that is most relevant to this paper is

Gavazza, Lizzeri and Roketskiy (2014). The focus of their analysis is to quantify the welfare

benefit of the secondary market and to investigate the effect of transactions costs on consumer

trading and welfare. They formulated and numerically solved a dynamic model of vehicle holding

that allows for the presence of transactions costs, and similar to the Chen, Esteban and Shum

(2013) study, they used a discrete state model where automobiles are distinguished by their

discrete age t rather than the continuous state framework that Rust (1985c) and Konishi and

Sandfort (2002) used. Rather than focusing on the effects on profits of firms in the primary

market, the focus of Gavazza, Lizzeri and Roketskiy (2014) was on welfare of consumers in the

secondary market, and how welfare is affected by changes in transactions costs. They find that a

calibrated version of their model “successfully matches several aggregate features of the US and

French used car markets.” and that “Counterfactual analyses show that transactions costs have

a large effect on the volume of trade, allocations, and the primary market. Aggregate effects on
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consumers surplus and welfare are relatively small, but the effect on lower-valuation households

can be large.” (p. 3668).

While our review of the literature shows that there has been tremendous progress in both

theoretical and empirical modeling of equilibrium in automobile markets, one of the gaps in

the literature is the absence of work on modeling the effects of macroeconomic shocks. Since

automobiles are among the most expensive durable goods outside of housing, it should not be

surprising that macroeconomic fluctuations can have a huge effect on the timing of household

purchases of new cars. In particular, when the economy is in a recession or about to go into

recession, households worry about heightened risks of unemployment if they have not experienced

unemployment already. Precautionary motives as well as tightened budget constraints appear

to induce customers to hold onto their existing durables longer and wait to replace them until

better times when they start to have more optimistic expectations about their employment

prospects and earnings potential. We have already seen evidence of this in the descriptive

graphs in section 2.3. Other analyses that have found similar effects include Adda and Cooper

(2000a) and Adda and Cooper (2000b). However these studies have not modeled equilibrium

in the primary and secondary markets in the presence of macro shocks. The cyclical variations

in purchases of new cars generate slowly evolving “waves” in the stock of used cars as we

illustrated in our descriptive analysis of the Danish data in section 2.3. Prices in the secondary

market must adjust dynamically to enable the wave in the “supply” of used cars from a previous

macroeconomic boom period to match the demand. Thus, both quantities and prices in an

automobile market that is subject to macroeconomic shocks do not satisfy the conditions for

“stationary equilibrium” that has been the focus of analysis in virtually all of the existing

literature that we are aware of.

A major reason why there has been little work on modeling equilibrium in a non-stationary

environment with macro shocks and other time-varying factors affecting consumer demand for

automobiles is due to the complexity in modeling the dynamics of equilibrium prices in the

presence of a dynamically evolving stock of vehicles in the economy. Since the stock of vehicles

that have not been scrapped that have been been inherited from the previous period affects the

supply of various ages of vehicles that will be supplied to the market, it follows that potentially

consumers would need to know the entire age distribution of the vehicle stock to help predict

market prices and how they will co-evolve over time along with the macro economic shocks and

other time varying variables such as fuel prices that affect new car purchase, scrappage of old

cars, and decisions on whether to sell or keep existing used cars. In principle, a high dimensional

object — the entire age distribution of the automobile stock — needs to be on of the “state

variables” that individuals need to keep track of to improve their forecasts of future auto prices.

However due to the well known “curse of dimensionality” of dynamic programming, it becomes

computationally infeasible to incorporate such high dimensional state variables in consumers’

optimization problems.

In this paper we follow an approach of Krusell and Smith (1998) that avoids the curse of

dimensionality of carrying the entire age distribution of cars as a state variable in the model

and instead using “summary statistics” to capture movements in this distribution over time.

In the problem Krusell and Smith (1998) studied, consumer heterogeneity implies that it is
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generally necessary to know the entire distribution of wealth in the economy to determine interest

rates, which in turn affect individual consumers’ savings decisions. However they showed that

consumers can make highly accurate forecasts of future interest rates if they only keep track of

the mean value of wealth (i.e. the mean of the distribution of wealth). Specifically, they found

that the R2 of regressions of current interest rate on mean wealth holdings in the economy was

very high: typically over 97% in the numerical solutions and simulations of their model. This

suggests that it is not necessary to confront the huge computational burden of carrying the

entire distribution of wealth as a state variable to provide good forecasts of future interest rates.

In our paper we follow their insight and do not attempt to carry the entire distribution

of car types and ages as a state variable in our dynamic programming model that we assume

consumers solve to determine their holdings and trading decisions for vehicles. In fact, we go

a step further and do not even attempt to use the mean ages of different vehicle types (in

analogy to what Krusell and Smith did) as state variables that consumers use to forecast future

automobile prices. Instead we assume that sufficiently good forecasts can be obtained using a

flexibly parameterized price function of the form P (τ, a, p,m) where τ is the type of car, a is the

age of a vehicle, and (p,m) capture the current fuel price and macro state (which are assumed

to evolve as an exogenous Markov process). We use a flexibly parameterized price forecasting

function and find that it enables consumers to provide very good forecasts of future auto prices

for different ages and types. It appears that there are high substitution elasticities for demands

for vehicles of different ages of a given type, as well as high substitution elasticities for the

decision to sell existing used cars, so even when there are pronounced “waves” in the stock of

vehicles caused by macro shocks, these waves do not result in pronounced waves in the prices of

vehicles due to the high substitution elasticities. That is, it is not necessary for prices to adjust

dramatically over time to equate supply and demand for cars of different ages in response to

various shocks and dynamic factors that lead to bunching and waves in the stock of vehicles.

2.4.3 Estimation of Dynamic Discrete Choice Models

This paper extends the literature by using fully dynamic models of individual households’ de-

cisions about which vehicles to hold and to trade. As we noted above, most of the previous

models in this literature ignored the fact that consumer decisions about automobiles are in-

herently dynamic choices. Previous empirical models of household choices such as as Berry,

Levinsohn and Pakes (1995), Goldberg (1998), or Petrin (2002) focused on household choice of

new vehicles only, and did so using a static discrete choice modeling approach. As we noted, the

earliest empirical, disaggregate discrete choice models of equilibrium in the automobile market

such as Manski and Sherman (1980) and Berkovec (1985) did estimate discrete choice models of

holdings that allowed consumers to choose both new or used cars, but they also adopted a static

choice perspective that treated consumers as making these choices every period, which would

potentially result in excessive amount of trading of cars relative to what actually occurs.

As we noted above, when there are zero transactions costs, the assumption that consumers

trade their existing cars for another new or used car every period can be rigorously justified,

but this is clearly not an empirically realistic assumption. In the presence of transactions costs,

households face a decision of whether to keep their current vehicle versus to trade for another
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new or used one. A literature on dynamic discrete choice, originating in the late 1980s (see, e.g.

Rust (1985b)) provided the econometric methods for structural estimation of dynamic discrete

choice models. This is a very flexible class of models that model probabilistic discrete dynamic

choice models where the values or discounted utilities of choosing various discrete alternatives in

each period are computed from the solution to a dynamic programming problem. These models

can readily accommodate transactions costs and result in predicted behavior that is much closer

to what we actually observe, specially with regard to the frequency at which households trade

their existing vehicle for another one.

Schiraldi (2011) is an example of the application of a micro-based dynamic discrete choice

modeling approach to study holding and tradings decisions of Italian households, but using ag-

gregate data. Shiraldi takes prices of new and used cars in the Italian market as exogenously

determined from the standpoint of individual households, and formulates and solves an individ-

ual households’ optimal holding and trading strategy for vehicles to maximize their discounted

expected lifetime utility. Using microaggregation of the individual consumer decision rules im-

plied by the dynamic programming problem, Schiraldi was able to predict the aggregate vehicle

holdings and trading patterns for the Italian economy as a whole, and he estimated the param-

eters of model using a simulated method of moments estimation strategy that finds parameter

values for household preferences that enable the predicted, simulated moments to best match a

set of actual moments characterizing aggregate holdings and trading of different types of vehicles

over the period 1994 to 2004.

A novel feature of Schiraldi’s analysis is to allow households to be “uncertain about future

product attributes but rationally expect them to evolve, based on the current market structure.”

He captures this uncertainty using a variable he calls the “mean net augmented utility flow”

arguing that “In a durable-goods setting, where the quality of the goods changes over time and

there is the possibility of reselling, consumers maximize the utility derived from the good in any

particular period net of the implicit rental price paid in that period to keep the good. Hence, the

net augmented utility flow seems a natural index that captures the per-period quality adjusted

by the price that consumers take into account to make their decisions.” (p. 274). Schiraldi

estimates significant transaction costs, with mean transactions cost equal to about e3200 in

1994 that slowly decline over time. It is interesting that these estimates are in the same ballpark

as those provided by Chen, Esteban and Shum (2013) for the U.S. market.

We are not aware of any dynamic discrete choice model of household-level holdings and

trading of vehicles that has been estimated using disaggregate household-level choice data, and

believe this is one of the contributions of this paper. With aggregate data, it is impossible

to observe how long individual households keep their vehicles before they are traded, nor it is

possible to say much about the heterogeneity in vehicle choices, such as which types of households

choose to hold newer cars and which choose older ones.

Cho and Rust (2010) provide an analysis of the vehicle trading behavior of a large rental

car company. Unlike most households, rental car companies typically buy brand new vehicles

and sell them very quickly, typically once the car is one or two years old. Due to the rapid

initial price depreciation of vehicles that we observe in most car markets, this strategy would

prove to be very expensive one and this is why we see few households except the very wealthiest
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ones following this type of trading strategy. Another interesting feature of the rental car market

that Cho and Rust (2010) point out is that rental car prices are typically flat as a function of

age or odometer value, whereas they argue that predictions of most models of equilibrium in a

competitive auto market are that rental prices should be declining functions of age or odometer

value, reflecting the decline in prices and price depreciation rates in the used car market as a

function of these variables. Cho and Rust (2010) argue that the trading strategy of the rental

car company they analyze is also “too expensive” in the sense that it is suboptimal from a

profit maximization perspective. Cho and Rust (2010) perform counterfactual analyses using

a microeconometrically estimated dynamic programming model that show that the car rental

company could significantly increase its profits by keeping its rental cars longer and discounting

the rental prices of older rental vehicles to induce its customers to rent them. Their findings

caused the rental car company to undertake a controlled experiment to verify the predictions of

their model and the company did indeed find that profits did increase significantly from shifting

to the recommended policy of discounting rental prices of older cars and keeping rental cars

roughly twice as long as the company keeps its cars under its status quo operating policy.

There has been comparatively little work on solution and estimation of dynamic models of

discrete and continuous choice beyond some recent work in this area such as Iskhakov, Jorgensen,

Rust and Schjerning (2015) that is not directly applicable to our problem. A final contribution of

this paper is to provide an estimable dynamic model with both discrete and continuous choices,

where households make an optimal short run continuous choice of how much to drive their

vehicle each period in response to their characteristics, the type of car they own, and the price

of fuel, as well as a longer run dynamic choice of the type of car to own, which takes into account

expectations of future driving and fuel prices, the household’s future income and age-varying

life cycle needs for driving (e.g. the presence of children, retirement, etc) as well as future macro

shocks that can affect both car prices and the household’s income.

3 The Model

In this section, we present the model. We first explain the state variables and decision variables

as well as the model fundamentals. Then, in Section 3.1, we explain the household’s dynamic

optimization problem, how we handle scrappage in the model and derive the Bellman equation.

Finally, in Section 3.2, we present the utility specification and the optimal driving equation.

We estimate a finite horizon lifecycle model of automobile holdings, driving and trading

decisions that features both vertical and horizontal product differentiation. Let τ denote the

“type” of vehicle. We will assume there are a finite number of possible types, τ ∈ {1, . . . , τ}.
These can be thought of as a make-model combination or simply a vehicle class (e.g., “luxury,”

“compact,” “economy,” “SUV,” “sport,” and “minivan”). In our estimation, we use two car

types according to the fuel types: gasoline and diesel.

To capture vertical product differentiation, we also distinguish the age of the vehicle, a ∈
{0, 1, . . . , a}, where a = 0 denotes a brand new vehicle, and a = 1 a one year old vehicle, and a

is the oldest vehicle in the market. For simplicity, we let a be a catchall class of all cars that are

of age a or older. Thus, we index the set of cars that consumers in Denmark can choose from

by (τ, a) where τ specifies a particular type of car and a denotes its age.
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This formulation is very useful for the tractability of the model, but does abstract from

changes in technology.7 We can note that changes in the real prices of cars are likely to be more

attributable to macroeconomic conditions than a particular technology innovation, but this is

an area for future work. There may also be a considerable degree of unobserved heterogeneity

in used vehicles of a given age and type. For example, some have been driven more than others,

and some are in better condition than others. However, Cho and Rust (2010) show that vehicle

age and odometer readings are highly correlated and that once age is included as a predictor of

car prices, the incremental predictive value of including the odometer is small.

We assume there is a secondary market where consumers can buy and sell used vehicles.

The vast majority of trade in the secondary market in Denmark (about 90% according to

bilbasen.dk, the largest used car website in Denmark) is intermediated by auto dealers rather

than done as direct exchanges between individual consumers. Dealers refurbish/repair the used

cars they buy and are legally required to guarantee the quality of the used cars they sell to

consumers. We assume that as frequent traders in the used car market, dealers have a compar-

ative advantage in inspecting and determining the physical condition of the used cars they buy

from consumers. This lessens the problem of asymmetric information about the condition of a

used car traded in Denmark, and thus we do not deem the Akerlof (1970) “lemons problem”

to be a significant barrier to trade of used cars in Denmark.8 In addition, this tends to reduce

the degree of idiosyncratic variation in the unobserved quality of cars that consumers can buy,

which helps to justify our assumption of a common price P (τ, a, p,m) for used cars of type τ

and age a in Denmark.

Of course there will be idiosyncratic variation in the quality of cars that are sold to dealers,

but we assume that by repairing/refurbishing used cars to be resold to other consumers, dealers

help to homogenize the condition of used cars that are sold. We assume that dealers have a

comparative advantage in estimating the costs of repairing and reconditioning a used car they

7We decided not to adopt the modeling approach of Schiraldi (2011) of using a device similar to his “mean
augmented net utility” since this is an endogenous stochastic process that is not firmly rooted in first principles
in the sense that there is no way we can see to derive the form of this stochastic process from more primitive
assumptions about consumer beliefs about the arrival of new technologies and models of vehicles to the market
over time. It was not clear to us that making a somewhat arbitrary assumption about beliefs of “endogenous
objects” (such as how consumers’ value functions change over time in response to new technological innovations in
the vehicle market) result in more trustworthy forecasts than the simpler assumption of “stationary expectations”
— i.e. the assumption that consumers do not expect any future technological innovations. Note that while we
maintain an assumption of stationary expectations with respect to technology, we do allow non-stationarity due
to the effects of macroeconomic shocks on the market, and we have chosen to focus on modeling how these factors
affect consumer beliefs and trading since it is far more obvious from our analysis of the data how such shocks
affect new car purchases and used car scrappage over time. We will attempt to investigate how our stationary
expectations assumptions regarding technology can be relaxed in future work.

8Despite the wide attention to the “lemons problem” that Akerlof article raised, there is not clear empirical
evidence that it is a serious problem in actual automobile markets. For example Bond (1982) found that pickup
trucks that were “purchased used required no more maintenance than trucks of similar age and lifetime mileage
that had not been traded.” leading him to conclude that “This leads to a rejection that the market for pickup
trucks is a market for lemons” (p. 839). However other studies, such as Engers, Hartmann and Stern (2008)
conclude that “Our empirical results strongly suggest that there is a lemons effect because there is significant
unobserved heterogeneity.” However we do not see sufficiently strong evidence for a lemons problem that would
justify the added complexity in trying to explicitly account for it in our model. Certainly the most extreme
prediction of asymmetric information does not hold: namely, the ‘lemons problem’ if it exists, is clearly not severe
enough to kill off trading in secondhand markets for autos. Around the world, we see active secondhand markets
for cars, which suggests to us that concerns about problems of asymmetric information and unobserved vehicle
quality are of second order of importance relative to the primary benefit of the gains to trade that come from
having an active secondary market.
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buy from a consumer and this repair cost is borne by the consumer who sells their used car to a

dealer. The idiosyncratic variability in this repair cost is captured by a random component in the

transactions cost that a consumer incurs when they sell their used car to a dealer. This leads to

the possibility that if a consumer has a used car that is in sufficiently poor condition, the amount

they would receive from selling this car to a dealer net of the cost of repairing/refurbishing the

vehicle could exceed the scrap price, P (τ, p,m). In this case we assume that the car would be

scrapped rather than sold to the dealer. We will describe this scrappage decision in further

detail in Section 3.1, but we will show that it constitutes a static subproblem that a consumer

faces whenever they decide to sell their existing car.

Our model allows for idiosyncratic factors such as the condition of the current car owned,

and other unobserved factors to affect decisions about keeping a vehicle or trading it for another

one. We account for these unobserved factors with random variables that capture the net effect

of unobserved variables that pertain both to the consumer and to different cars they might

consider buying, and other factors that may vary over time. For computational tractability

of the model, we assume these unobserved factors have IID (over time) multivariate Type 3

generalized extreme value distributions that result in a “nested logit” structure for car choices.

The nested logit specification allows for correlation in the unobserved transactions costs faced

by a consumer who chooses to replace their current car. This enables the model to capture

endogenous scrappage decisions, i.e., the consumer’s choice of whether to scrap their current

car, or sell it in the used car market.

Besides the variables (τ, a) that index the type and age of car the consumer may currently

own as well as all vehicles they can choose from at any given point in time, we introduce the key

macro variables that we believe are relevant both for individual choices and for the equilibrium

of the market as a whole, (p,m) where p is the current price of fuel (we assume that diesel fuel is

a fixed fraction of the price of gasoline, which is reasonably justified from the evidence presented

in section 2) and m is an indicator of the “macro state” of the Danish economy. We model m as

a binary variable where m = 0 indicates that the economy is in a recession period, and m = 1

indicates a non-recession period.

Consumer expectations of the price of a typical car of type and age (τ, a) when the economy

is in state (p,m) are given by the function P (τ, a, p,m). These expectations affect individual

agents’ choices of vehicles in an important way as we describe in more detail below. However

we do not assume that agents have perfect expectations of vehicle prices in the sense that their

beliefs about car prices coincide exactly with the actual future prices of new and used cars,

that may change over time due to the effects of unforseen macroeconomic or fuel price shocks.

We define a notion of temporary equilibrium in Section 5 where realized prices of vehicles are

computed that clear the market in the sense of setting expected excess demand to zero. We

place no restrictions on the form of these realized or temporary equilibrium prices and allow

them to vary freely over time to clear the market period by period. While consumers may

not be able to exactly predict future prices of vehicles, they can form very good predictions of

future prices using flexibly parameterized price functions P (τ, a, p,m) that depend on the type

of each car τ , the age of the car a, and (p,m) the current fuel price and macro state. In fact,

in our initial work, we find we are able to provide good approximations to future prices using
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expectation functions of the form P (τ, a) that do not even depend on the variables (p,m) at

all. We will discuss the distinction between consumer expectations of prices and the prices that

actually clear the market in more detail in section 5.

Since Denmark has no domestic car production, we make a “small open economy” assumption

that there is an infinitely elastic supply of new cars in Denmark at fixed “world prices”. That is,

we assume that the prices of all new cars are exogenously fixed at values P (τ, p,m) ≡ P (τ, 0, p,m)

that represent auto producers’ profit maximizing pricing decisions under the assumption that

demand for new cars from Denmark is a negligible component of their overall worldwide sales.

Similarly, we assume there is an infinitely elastic demand for vehicles for their scrap value at an

exogenously fixed price P (τ, p,m) = P (τ, a(τ), p,m), where a(τ) is the oldest age of a vehicle

of type τ in our model.9 We will present our model of the scrappage decision below, but it is

helpful to point out that this model incorporates idiosyncratic shocks to the choice of scrapping

and the choice of selling a used car in the secondary market. Sometimes it is possible that

a consumer would choose to scrap a car (τ, a) even though the scrap price is lower than the

prevailing secondary market price of that vehicle P (τ, a). The idiosyncratic shocks capture

unobserved costs associated with scrapping versus selling, such as repair costs that an owner

would have to undertake to put their car in “sellable condition.” Net of these repair costs the

amount a household could receive from selling their car could be less than what they would

receive from scrapping it, so these shocks can explain situations where households scrap cars for

an amount that appears less than the amount they could receive from selling the car. While

the temporary equilibrium prices we compute are generally monotonically decreasing from the

exogenously fixed new car price P (τ) to the exogenously specified scrap price P (τ), due to

the presence of idiosyncratic shocks and the effects of sufficient concentrations of older cars on

market prices, it can sometimes be the case that there will be slight non-monotonicities in the

prices we calculate, including a possibility that some used car prices of sufficiently old vehicles

could be slightly below the scrap price.

The scrappage decision is important for helping our model to capture the age distribution

the vehicle stock in Denmark, which has an upper tail that declines with age. If we made an

alternative assumption that no car is scrapped until it reaches the oldest age a(τ), then in the

absence of macro shocks the model would imply a uniform stationary distribution of vehicle ages

which is contrary to what we observe. Further, our model allows for accidents that result in a

total loss of the vehicle. We model this as a probability α(τ, a, x) that a car of type τ and age

a owned by a consumer with characteristics x will experience an accident during the one year

period of our model that is so severe that it is uneconomic to repair the vehicle. When such an

accident occurs, the consumer is assumed to lose the vehicle, and thus the consumer enters the

next period t + 1 as a household that does not own a car. In this way, accidents constitute an

“involuntary” component of vehicle scrappage in our model that will help the model to fit the

non-zero fraction of young cars being scrapped as shown in Figure 2.8.

We assume that households cannot purchase a car of the highest age a = a(τ) in the used

car market. Nevertheless, our model does allow consumers to own cars that are of this age.

They can do this simply by keeping their current car until it reaches age a(τ). Once the car

9In the estimation, we will set a(τ) = 24 for τ = 1, 2 corresponding to gasoline and diesel.
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reaches this age, we assume that it no longer important to keep track of its exact age. Thus to

keep the age variable a bounded, we simply assume that all cars that are age a(τ) and older

are in the oldest age “equivalence class.” We do observe a slight upwards shift in the car age

distribution for a = 24 in Figure 2.1. When a consumer holding one of these cars wishes to get

rid of it, the only option is to scrap it and receive the scrap price P (τ, p,m). The model can

easily be extended to allow for trading in cars of the oldest age.

The prices of cars at all ages below the maximum, a ∈ {1, . . . , a − 1} are determined en-

dogenously in the secondary market for vehicles in Denmark, i.e. as the prices that equate the

supply and demand for vehicles of each type τ and each age a ∈ {1, . . . , a} when the macro state

is (p,m). These prices will generally exceed the scrap price P (τ, p,m), and there will generally

be supply of cars of these ages, but we do not make any restrictions on equilibrium prices yet.

We return to this when we discuss the scrappage problem.

Let x denote a vector of household-specific variables the most important of which include

a) age of household head, b) household income, and c) other observed and unobserved time-

invariant factors. Age and income are treated as time-varying state variables. In the empirical

application, we do not currently include any variables under c) but we include it in the exposition

for completeness. An example of c) would be to allow for unobserved heterogeneity in households

in their preferences for cars. Other types of observable heterogeneity can be allowed such as

estimating separate models for urban and rural households. In future work we plan to explore

various specifications that allow for richer types of unobserved and observed heterogeneity, but

our approach is to start with the simplest specification that already allows for a good deal of

heterogeneity via avenues a) and b) above.

We focus on households that own at most one car, which accounts for 87.9% of Danish

households. We assume decisions are updated on an annual basis. At the start of each year a

household makes a decision about whether to buy a new vehicle and/or sell their existing vehicle,

but our model does not allow a household to purchase more than one vehicle in any period, and if

a household has an existing vehicle, it cannot purchase another one unless it simultaneously sells

the existing one. We assume that if a transaction decision is made, it occurs at the beginning

of the period, i.e. if the customer trades for a new car, they will be able to use the new car

immediately and for the rest of the one year time period. Let d′ = (τ, a) denote the car choice

decision, where d′ = (∅, ∅) denotes the decision not to have any car.

It is important to realize that the last year’s car choice constitutes part of the current

state of the household at the start of time t when we assume it updates its decision about its

automobile holdings. Thus we let d = (τ, a) denote the household’s car state where we use the

state d = (∅, ∅) to denote a household that does not currently own any car. If a household has

no car, at the start of each (one year) period in the model we assume that the household makes

a car purchase decision d′ = (τ ′, a′) where τ ′ is the type and a′ is the age of car it chooses to

buy. If the household chooses not to buy any car, this corresponds to the decision d′ = (∅, ∅).
Now consider a household that has an existing car d = (τ, a) 6= (∅, ∅). This household

actually faces two simultaneous discrete decisions: 1) a sell decision and 2) a buy decision. In

order to reflect the sell decision, we add a third component ds to the vector d′ = (τ ′, a′, ds)

where the sell decision ds takes three possible values, ds ∈ {−1, 0, 1} where ds = −1 denotes a
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decision to sell the car for scrap, i.e., to receive P (τ, p,m) for it, ds = 0 denotes the decision

not to sell the car (i.e. keep the current car d = (τ, a)), and ds = 1 denotes the decision to sell

the car in the secondary market, i.e. to receive an expected price of P (τ, a, p,m). As we noted

above, there are random shocks to utility (to be described in more detail shortly) that capture

a number of factors that are observed by the household and unobserved by the econometrician,

including any deviation between the actual selling price of the existing vehicle and its expected

value P (τ, a, p,m).

The sell decision provides the notational distinction we need to reflect the fact that a house-

hold who owns a car d = (τ, a) may either want to keep that car (ds = 0), scrap that car

(ds = −1) or trade that car (ds = 1) and purchase another car d′ = (τ, a) of the same type

and age. Notice that when a household chooses to keep the current car, ds = 0, then the only

possible value for the (τ ′, a′) components of d′ are (τ ′, a′) = (τ, a) where d = (τ, a) is the type

and age of the currently owned vehicle. However if the household chooses to scrap or trade the

current car, then they are free to choose any type of replacement vehicle, including a vehicle

with the same type and age (τ, a) as their currently owned vehicle.

Thus, the choice set of a household that owns a car d = (τ, a) 6= (∅, ∅) is

D(d) = (3.1){
(τ, a, 0), {(∅, ∅, ds), ds ∈ {−1, 1}}, {(τ, a, ds), τ ∈ {1, . . . , τ}, a ∈ {0, . . . , a− 1}, ds ∈ {−1, 1}

}
corresponding to the options of 1) keeping the current car, or 2) selling or scrapping the current

car and not buying another one to replace it (where (τ ′, a′) = (∅, ∅) denotes this choice), or 3)

choosing to buy some other car d′ = (τ ′, a′).

The choice set for a household that does not have a car d = (∅, ∅) is

D(d) =
{

(∅, ∅), {(τ, a), τ = 1, . . . , τ , a = 0, . . . , a}
}

(3.2)

corresponding to the options of 1) continuing to not have any car, or 2) buying some car

d′ = (τ ′, a′).

We use the notation vs(d
′, d, p,m, x) to denote the generic indirect utility that a household

whose head is aged s and has observed characteristics x receives from the vehicle choice d′ at

the start of period t if it starts that period with a current car state d, and the fuel price is p

and macro state is m. The reason we use the term “indirect utility” is that for households who

choose to own a car vs(d
′, d, p,m, x) reflects the household’s expected utility from the use of that

car during the coming year. We will introduce additional notation and a more detailed model of

vehicle driving decisions in the next section, and show how we derive tractable functional forms

for the indirect utility function from flexibly specified regression models of household driving

decisions. For households who choose not to own a vehicle, vs(d
′, d, p,m, x) reflects the indirect

utility from use of alternative non-car modes of transportation, such as bicycles, walking, and

public transportation.

28



3.1 Household Dynamic Vehicle Choice Problem

We now describe the household’s dynamic optimization problem. The household lives for a finite

time (with stochastic mortality of the household head, at which point we treat the household as

dissolved) and makes a sequence of car ownership decisions at annual intervals over the lifetime

of the household. We assume the youngest age of any household head is s = 20 and the oldest

possible age of a household head is s = 85. In addition, the households who own a car have an

additional continuous decision on the number of kilometers to drive their car over the year, and

the details of this decision will be described in the next section.

Just as in much of the relevant literature on vehicle choice, we do not solve a complete life-

cycle optimization problem for the household. That is, we ignore the overall consumption-savings

problem and do not carry household wealth as a state variable of the decision problem. Instead,

we ignore borrowing constraints and assume that the household has enough cash on hand to buy

a car when it wants to. Further we assume that the indirect utility function vs(d
′, d, p,m, x) is a

“quasi-quasi-linear” function of the after tax household income y (a component of the vector of

observed household characteristics x). That is, we assume that y enters vd(d
′, d, p,m, x) in an

additively separable fashion but we allow y to enter into a coefficient θ(y,m) representing the

“marginal utility of income” to reflect the effects of shifts in income on car usage, holding and

purchase decisions. Low income households will have high marginal utilities of income, and thus

a high “opportunity cost” for use of income for consumption other than automobiles. This will

cause low income households to buy cheaper new cars, or used cars and perhaps to drive less

compared to higher income households. Also expectations of future income and macro shocks

will affect car purchases, and if a household expects to be in a period where their income will be

persistently low (e.g. during a recession) they will expect their marginal utility of income to be

high during this period and this could cause them to delay a purchase of a new car until better

times when the economy is out of recession and their income is higher.

Though we do not model liquidity constraints explicitly, variations in the marginal utility of

income can also indirectly reflect liquidity effects. A liquidity constrained household is likely to

have a high marginal utility of income, and thus is less likely to purchase a new car. The cost of

trading vehicles is captured by a trading cost function T (d′, d, p,m). This function captures the

cost of buying a new car d′ net of the proceeds received from selling the existing car d, plus a

transactions costs and taxes associated with the purchase of a new car. More over, and perhaps

more importantly, it covers non-monetary factors that result in higher holding times such as

search costs, information frictions and psychological attachment to an old car. The trading cost

function is given by

T (d′, d, p,m) = (3.3)

0 if d′ = (τ, a, 0) or d, d′ = (∅, ∅)
P (τ ′, a′, p,m)− P (τ, a, p,m) + cT (τ ′, a′, p,m) if d′ = (τ ′, a′, 1) and d = (τ, a)

P (τ ′, a′, p,m)− P (τ, p,m) + cT (τ ′, a′, p,m) if d′ = (τ ′, a′,−1) and d = (τ, a)

−P (τ, a, p,m) if d′ = (∅, ∅, 1) and d = (τ, a)

−P (τ, p,m) if d′ = (∅, ∅,−1) and d = (τ, a)

P (τ ′, a′, p,m) + cT (τ ′, a′, p,m) if d′ = (τ ′, a′) 6= (∅, ∅) and d = (∅, ∅)
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Thus, there are no trading costs if the household keeps its current car, or does not have

a car and chooses not to buy one. Trading costs are incurred when a household trades in

their current car (τ, a) and buys a new one (τ ′, a′). The function cT (τ ′, a′, p,m) represents the

transactions cost that a household incurs when purchasing a car (τ ′, a′). We assume that there

are no transactions costs for selling an existing car (d, a) so that P (τ, a, p,m) represents the

net amount a consumer would receive from an auto dealer if they were to sell their current

car, whereas if they were to buy the same car (τ, a) from the dealer, the total price would be

P (τ, a, p,m) + cT (τ, a, p,m). Thus, cT (τ, a, p,m) can be regarded as a “bid-ask spread” that

reflects both the repair and cleaning costs the dealer incurs to put a used car into “selling

condition” as well as a profit margin for the dealer.

We assume that total transactions costs consist of a part that is proportional to the cost of

the car plus an additive, fixed component

cT (τ ′, a′, p,m) = P (τ ′, a′, p,m)b1(τ ′, a′, p,m) + b2(τ ′, a′, p,m) (3.4)

where b1 is the part of transactions costs that is proportional to the price of the car (τ ′, a′)

the consumer buys. In our initial estimation we use a simple specification where transaction

costs are independent of the type and age of the vehicle, which amounts to the restriction

b1(τ ′, a′, p,m) = b1 and b2(τ ′, a′, p,m) = b2.

We also assume that the new car registration tax is included in the (exogenously determined)

prices of new cars, P (τ, 0, p,m). There is no tax on purchases of used cars in Denmark. Thus,

a household that does not currently own any vehicle but decides to buy a car (τ, a) will incur a

buy transactions cost that is incorporated in the gross (bid) price P (τ, a, p,m) + cT (τ, a, p,m),

but a household who wants to sell a car (τ, a) does not incur any transaction costs, but instead

receives the net of transaction cost (ask) price P (τ, a, p,m).

Note that the indirect utility function vs(d
′, d, p,m, x) will depend on the trading cost func-

tion T (d′, d, p,m) and the precise way it depends on T will be detailed in the next section. In

the remainder of this section we present the Bellman recursion equations that define the house-

hold’s optimal dynamic vehicle holding and trading strategy. As is the traditional practice in

dynamic discrete choice models, we augment the set of state variables to allow for IID extreme

value distributed unobserved state variables ε the enable us to derive convenient multinomial

conditional choice probabilities for the events of whether a household keeps their car, buys a new

car, etc. Thus, in addition to the indirect utility function vs there is an additive error term ε(d′)

representing the impact of idiosyncratic unobserved factors that affect the consumer’s choice,

so the total current period utility becomes vs(d
′, d, p,m, x) + ε(d′). Let ε = {ε(d′)|d′ ∈ D(d)}

be the vector of these unobserved terms for all possible choices d′ in the consumer’s choice set

D(d). The choice set depends on the current car choice d so that only choices relevant to the

consumer’s current state are available.

Let Vs(d, p,m, x, ε) be the value function for a household of age s that owns a car d = (τ, a)

(or no car if d = (∅, ∅)) when the macro state is m, the fuel price is p, and the household has

observed characteristics x and unobserved characteristic (state) (ε). Our specification treats ε is

a vector-valued IID extreme value process with a number of components equal to the number of

elements in the household’s state-dependent choice set D(d) described in section 3.1 above. Note
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that the Type 3 extreme value distribution involves both contemporaneous independence between

different components ε(d) and ε(d′) for d 6= d′ as well as serial independence in the overall vector

stochastic process {εt}. These assumptions are mostly for computational convenience, though

it is far easier to relax the assumption of contemporaneous independence, whereas relaxing

the serial independence assumption is significantly harder and appears to be computationally

infeasible given currently known econometric methods and computer technology.10

In future work we intend to relax the assumption of contemporaneous independence between

the components εt(d) and εt(d
′) for d 6= d′ for any fixed time period t. A natural specification

is the generalized extreme value (GEV) distribution for the vector εt that allows for contem-

poraneous correlation in the components of εt corresponding to a partition of the choice set of

cars into car classes such as commonly used marketing categories such as “compact” “luxury”

“sport utility vehicle” (SUV) and so forth. This partition of the car types τ can reflect unob-

served characteristics of cars that are not easy to capture using traditional observable variables

such as car weight or wheel base, that reflect characteristics of cars that consumers can observe

that constitute patterns of “similarity” in these characteristics. The resulting model is the well

known nested logit model that has been frequently used in discrete choice models of auto choice.

In our initial model since we only allow for two different car types, diesel and gasoline, we feel

that the types themselves capture the relevant unobserved characteristics of these two broad

groups of vehicle types. The nested logit model is more revelant for future specifications where

we might add more type of vehicles in the model, such as different model or brands within the

two broad categories “gas” and “diesel”.

The Bellman equation for Vs is given by

Vs(d, p,m, x, ε) = max
d′∈D(d)

[
vs(d

′, d, p,m, x) + ε(d′) + βEVs(d
′, d, p,m, x, ε)

]
(3.5)

where EVs(d
′, d, p,m, x, ε) is the conditional expectation of Vs+1(d̃, p̃, m̃, x̃, ε̃) given the current

state (d, p,m, x, ε) and decision d′, where the tildes over the variables (d, p,m, x, ε) entering Vs+1

indicate the expectation is taken over the uncertain time t + 1 variables of these time-varying

state variable. Since there are no wealth effects in our model, any decision that involves selling

the current current car d (such as whether it should be sold on the secondary market or scrapped)

does not affect the expected value of future utility conditional on the current choice d′, and thus

EVs depends only on d′, not d. Further, due to the fact that {εt} is serially independent, EVs

depends on ε only via the current choice d′ and thus EVs does not depend directly on ε given

d′, and we can write it as EVs(d
′, p,m, x). This implies that we can write the Bellman equation

as

Vs(d, p,m, x, ε) = max
d′∈D(d)

[
vs(d

′, d, p,m, x) + ε(d′) + βEVs(d
′, p,m, x)

]
. (3.6)

Let Vs(d
′, d, p,m, x) denote the choice-specific value function

Vs(d
′, d, p,m, x) = vs(d

′, d, p,m, x) + βEVs(d
′, p,m, x). (3.7)

10Reich (2013) provides a promising new method for structural maximum likelihood estimation of dynamic
discrete choice models with serial correlated unobservables, but so far the method has been only demonstrated
for binary choice models and it is not clear that this method will continue to be tractable for high dimensional
choice sets such as in the auto choice problem.
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Then following Rust (1985b) we can rewrite the Bellman equation (3.5) in terms of the choice-

specific value functions (3.7) as

Vs(d, p,m, x, ε) = max
d′∈D(d)

[
Vs(d

′, d, p,m, x) + ε(d′)
]
. (3.8)

Equation (3.8) simply says that the value function Vs(d,m, p, x, ε) is the maximum over all

alternatives d′ ∈ D(d) of the choice-specific value functions Vs(d
′, d, p,m, x) accounting also

for the effects of the IID extreme value shocks ε(d′) which represent transient, idiosyncratic

unobserved components of utility that affect consumers’ choices.

We now discuss an assumption on the distribution of the shocks ε(d′) that allows us to model

endogenous scrappage decisions in a particularly simple manner. Note that for any alternative

d′ that involves trading an existing car for another one, the consumer has two possible options:

1) scrap the existing car, or 2) sell it in the secondary market. The assumptions we place on the

utility function (quasi-linearity in the utility of driving from consumption of other goods) imply

that the decision of how best to to dispose of the existing vehicle is separable from the decision

of which new car to buy. The consumer will sell the existing car on the secondary market if

the net proceeds from doing this is greater than the net proceeds the consumer would receive

from scrapping it. Recall that for decisions involving trading the existing vehicle, the decision

is represented by three components, d′ = (τ ′, a′, ds) where ds = 1 if the consumer sells the car

in the secondary market, and ds = −1 if the consumer chooses to scrap the car.

We assume a nested logit structure for the distribution of the unobservable components of

cost/utility ε(τ ′, a′, ds) associated with each of the two possible decisions ds for any decision

d′ = (τ ′, a′, ds) involving trading the current vehicle (i.e. where d 6= (∅, ∅) and ds 6= 0). We

assume that the unobservable components (ε(τ ′, a′,−1), ε(τ ′, a′, 1)) corresponding to the choice

of whether to sell or scrap the currently held vehicle have a bivariate marginal distribution given

by

F (ε(τ ′, a′,−1), ε(τ ′, a′, 1)) = exp
{
−
[
exp{−ε(τ ′, a′,−1)/λ}+ exp{−ε(τ ′, a′, 1)/λ}

]λ}
(3.9)

where λ ∈ [0, 1] is a parameter indexing the degree of correlation in (ε(τ ′, a′,−1), ε(τ ′, a′, 1)).

These are independent Type 3 extreme value random variables when λ = 1 and they become

increasingly correlated as λ→ 0. It is not hard to show that max(ε(τ ′, a′,−1), ε(τ ′, a′, 1)) has a

Type 3 extreme value distribution with a scale parameter λ = 1 which is the scaling parameter

we assume (as a normalization) for the Type 3 extreme value distributions we assume for all

of the distributions of all of the unobserved components of utility ε(d′) for the “upper level”

decisions d′(τ ′, a′) (i.e. all decisions except the decision about whether to scrap or sell the current

car).

For each decision d′ that involves trading the existing vehicle d = (τ, a), the consumer will

prefer to sell the vehicle in the secondary market if

P (τ, a, p,m) + ε(τ ′, a′, 1) ≥ P (τ, p,m) + ε(τ ′, a′,−1). (3.10)

Note that the unobserved components in the decision of whether to scrap the current vehicle or
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sell it in the secondary market depend on (τ ′, a′), which is the consumer’s choice of new car. The

third component, which takes the values {−1, 1}, corresponds to the decision to scrap or sell

the current car d = (τ, a). We assume that the pairs (ε(d′,−1), ε(d′, 1)) and (ε(d,−1), ε(d, 1))

are independently distributed for any pair of upper level choices d′ = (τ ′, a′) 6= d = (τ, a). This

implies that conditional on making the “upper level” choice to trade the current car for a car

d′ = (τ ′, a′) the consumer decides to sell their current car with probability

Pr
{
ds = 1|d, d′, p,m, x

}
=

exp {P (τ, a, p,m)/λ}
exp {P (τ, a, p,m)/λ}+ exp {P (τ, a, p,m)/λ}

. (3.11)

The conditional probability of scrapping the car is just 1 − Pr{ds = 1|d, d′, p,m, x}, and these

choice probabilities can be calculated independently of the overall solution of the dynamic pro-

gramming problem given in equation (3.6) since the sell/scrap “subproblem” involve the simple

choice of whether the net proceeds of selling the car in the secondary market exceed the scrap

value P (τ, p,m), accounting for unobservable components of the transactions costs associated

with selling the car to a dealer, ε(τ, a, 1), and scrapping it, ε(τ, a,−1), respectively.

Letting d′ = (τ ′, a′), then we can write

max
[
vs((d

′,−1), d, p,m, x) + ε(d′,−1), vs((d
′, 1), d, p,m, x) + ε(d′, 1)

]
=

λ log
(
exp{vs((d′,−1), d, p,m, x)/λ}+ exp{vs((d′, 1), d, p,m, x)/λ}

)
+ ε(d′). (3.12)

where ε(d′) is a Type 3 Extreme value random variable with scale parameter λ = 1 that is

distributed independently of ε(d) for d′ 6= d. What we mean by the representation given in

equation (3.12) is that the left and right hand sides have the same probability distribution, and

the right hand side is equivalent to a “regression equation” that expresses the maximum utility

of whether to scrap or sell the current car in terms of expected value (the log-sum term on

the right hand side of (3.12)) and a single error term ε(d′) that has as Type 3 Extreme value

distribution with scale parameter λ = 1.

Using equation (3.12) we can redefine the indirect utility function vs(d
′, d, p,m, x) as the

expected maximum over the two decisions ds ∈ {−1, 1} for any upper level choice d′ = (τ ′, a′)

that involves trading the current car d = (τ, a) for a new one. This allows us to abstract from the

“lower level” scrap versus sell decision ds and treat d′ = (τ ′, a′) as just the upper level decision

of whether to keep the current car (or continue to have no car if d = (∅, ∅)), or choose one of

the available vehicles d′ = (τ ′, a′). For this “upper level choice problem” over d′ = (τ ′, a′) we

redefine the indirect utility as

vs(d
′, d, p,m, x) =

λ log
(
exp{vs((d′,−1), d, p,m, x)/λ}+ exp{vs((d′, 1), d, p,m, x)/λ}

)
+ ε(d′). (3.13)

Then with this redefinition/reduction, the Bellman equation (3.6) applies to the “upper level”

choices d′ = (τ ′, a′). The probability that a consumer will choose to trade their existing car
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d = (τ, a) for another car d′ = (τ ′, a′) is then given by the standard multinomial logit model

P (d′|d, p,m, x) =
exp{Vs(d′, d, p,m, x)}∑

d′′∈D(d) exp{Vs(d′′, d, p,m, x)}
. (3.14)

where Vs(d
′, d, p,m, x) is the choice-specific value function (3.7) except that the indirect utility

function vs(d
′, d, p,m, x) is given by the redefined log-sum value given in equation (3.13) above.

Then given the choice to trade the current car d = (τ, a) for another car d′ = (τ ′, a′), the

conditional probability that the consumer chooses to scrap the current car is given by equation

(3.11) and the conditional probability that the consumer chooses to sell the current car is just

1 minus this probability.

As usual in nested logit models, it is important to remember that the decisions of which

car to trade for d′ = (τ ′, a′) and whether or not to scrap or sell the current car ds are made

simultaneously at each time period t even though the nested logit conditional choice probabilities

create a strong temptation to view them as sequential decisions. The only sequential choices

are those made at different time periods: all of the choices made at any given time period are

made simultaneously at each time t.

Now we can further simplify the Bellman equation by writing it in terms of an “upper level

log-sum”, where the choices are now d′ = (τ ′, a′) and we have subsumed the lower level choice

of whether to scrap or sell the current car as described above. Let f(d′) denote the state of the

chosen car d′ next period t + 1. This is simply a reflection that if the consumer either chooses

to keep their current car or trade for another one, that car d′ = (τ ′, a′) will be one year older

next year (except at a = ā). Using primes to denote next period values of the time varying state

variables, (p,m, x, ε), we can use the properties of the independent Type 3 extreme value shocks

ε(d′) to write the expectation of Vs+1 with respect to ε′ as follows:∫
ε′
Vs+1(f(d′), p′,m′, x′, ε′)q(dε′) =

∫
ε′

max
d′′∈D(f(d′))

[Vs+1(d′′, f(d′), p′,m′, x′) + ε′(d′′)]q(dε′)

= log

 ∑
d′′∈D(f(d′))

exp
{
Vs+1(d′′, f(d′), p′,m′, x′)

}
≡ ϕ(f(d′),m′, p′, x′). (3.15)

Following Rust (1987) we can write the following recursion equation for the choice-specific value

functions

Vs(d
′, d,m, p, x) = vs(d

′, d,m, p, x) + (3.16)

β
∑
m′

∫
p′

∫
x′
ϕ(f(d′),m′, p, x′)g(x′|x,m′, p′,m, p)h(p′,m′|m, p)dx′dp′

where f(d′) is given by

f(d′) =

{
(∅, ∅) if d′ = (∅, ∅) or d′ = (∅, ∅, ds), ds ∈ {−1, 1}
(τ ′,min[a, a′ + 1]) if d′ = (τ ′, a′) or d′ = (τ ′, a′, ds) ds ∈ {−1, 0, 1}.

(3.17)

As mentioned earlier, the continuation value (i.e. the expected discounted value of future utility,
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given by the expression multiplied by β in equation (3.17) above) depends only on d′ and not

on d. This is what equation (3.17) formalizes; for households who buy a new or used car, the

continuation value is independent of whether the previous car was sold on the secondary market

or scrapped. The expected utility only depends on the type and age of the replacement car,

d′ = (τ ′, a′). In addition to ignoring whether the previously held car was sold or scrapped, the

f function ages the car that the household chose (or continued to hold, if ds = 0) by one year,

incrementing its age from a′ at the start of period t to a′ + 1 at the start of period t+ 1.

As we noted previously, to keep the state space bounded we only track the age of vehicles

of type τ up to some maximum age a(τ), and we lump all cars of that type that are older than

a(τ) into an equivalence class of “very old cars”. Note that the Bellman equations do allow

consumers to keep cars that are age a and older. This is what makes it possible for the model to

predict “mass points” in the age distribution of cars in the cell representing very old cars that

are age a and older. This mass point reflects consumers who decide to hold these cars rather

than scrap them.

Comparing the two versions of the Bellman equations (3.8) and (3.17) we see that

EVs+1(d′, p,m, x) =
∑
m′

∫
p′

∫
x′
ϕ(f(d′),m′, p, x′)g(x′|x,m′, p′,m, p)h(p′,m′|m, p)dx′dp′ (3.18)

Note that the expected value function is only a function of the chosen car d′ = (τ ′, a′) but not

the current car d = (τ, a) or the decision ds of whether to scrap, or sell the current car, except

in the case where the consumer chooses to keep the current car another year. Furthermore, the

indirect utility functions we consider will have the property of additive-separability in the d′ and

d decision variables. This implies a substantial reduction in the dimensionality and we exploit

this property to dramatically reduce the time required to solve the model by backward induction:

instead of computing and storing the full set of choice-specific value functions Vs(d
′, d,m, p, x)

for all ages s and all values of the state variables, it is sufficient to compute and store only the

expected values EVs(d
′, p,m, x). This computational reduction can be substantial even at fairly

coarse discretization.

A small adjustment to the recursion equations is necessary to account for accidents that

“total” a car (i.e., completely destroy it, beyond all chance of repair). In such cases, we assume

that the car involved in the accident must be replaced at the start of the next period, but that

insurance covers part of the cost of the car involved in the accident, but with some coinsurance

rate ψ. So if the household chose a car d = (τ, a) at the start of the period, and this car

was involved in an accident that totaled it, the household would receive an payment of (1 −
ψ)P (τ, a,m, p). Then at the start of the next period the household would have no car d = (∅, ∅),
but could use the insurance payment towards the purchase of a replacement vehicle of its choice.

Let αs(τ, a, x) denote the probability that a household of age s with characteristics x that owns

a car (τ, a) will have an accident that totals the car sometime during the period. Then the
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equation for the expected value of future utility (3.18) above needs to be modified as follows

EVs+1(d′, p,m, x) = (3.19)

(1− αs(d′, x))
∑
m′

∫
p′

∫
x′
ϕ(f(d′),m′, p, x′)g(x′|x,m′, p′,m, p)h(p′,m′|m, p)dx′dp′

+ αs(d
′, x)

∑
m′

∫
p′

∫
x′
ϕR(f(d′),m′, p, x′)g(x′|x,m′, p′,m, p)h(p′,m′|m, p)dx′dp′.

where ϕR is the expected maximum utility over a restricted choice set DR(d) that requires the

consumer to scrap their current car choice d that was involved in the accident:

DR(d) = {{(∅, ∅,−1), {(τ, a,−1), τ ∈ {1, . . . , τ}, a ∈ {0, . . . , a− 1}} (3.20)

corresponding to the options of 1) scrapping the current car and not buying another one to

replace it (where (τ ′, a′) = (∅, ∅) denotes this choice), or 2) choosing to buy some other car

d′ = (τ ′, a′), possibly including another car d′ = d = (τ, a) of the same type and age as the current

car that was involved in the accident. The definition of ϕR is similar to the definition of ϕ in

equation (3.17) above except that the expectation is taken over the restricted set of alternatives

DR(d) and the value functions entering into ϕR reflect a modified version of the trading cost

function T (d′, d, p,m) given in equation (3.3) that reflects the insurance reimbursement net of

coinsurance. Specifically, the modified trading cost function for a household who owns a car

d = (τ, a) that is totalled in an accident, denoted TR(d′, d, p,m), is given by

TR(d′, d, p,m) = (3.21){
−P (τ, a,m, p)(1− ψ) if d′ = (∅, ∅)
[P (τ ′, a′, p,m)− P (τ, a, p,m)(1− ψ) + cT (τ ′, a′, p,m)] if d′ = (τ ′, a′,−1) and d = (τ, a)

The Danish register data do not allow us to distinguish between “involuntary scrapping” caused

by accidents that result in a total loss (unrepairable loss) to the vehicle, and “voluntary scrap-

ping” where the customer makes a decision to scrap in connection with a trade, as discussed

above.

3.2 Utility Specification

The approach here loosely follows that in Gillingham (2012) and Munk-Nielsen (2015). Let k

be the total planned kilometers traveled by car over the coming year, and let pk(τ, a, p, co) be

the cost per kilometer traveled, defined as pk(τ, a, p, co) ≡ p
e(τ,a) + co, where e denotes the fuel

efficiency of the vehicle in kilometers per liter and co contains additional per-kilometer driving

costs such as operating and maintenance costs but could also contain road tolls. Thus, the total

costs of driving k kilometers is pk(τ, a, p, co)k. Let u(vkt, τ, a, p,m) be the conditional direct

utility a household expects from owning a vehicle of type τ and driving a planned k kilometers,
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given by

u(k, τ, a, s, p,m) = θ(y,m)[y − pk(τ, a, p, co)k − T ] (3.22)

+ γ(y, s, a,m)k + φk2 − q(a) + δn1(a = 0) + δτ .

where θ(y,m) the marginal utility of money. We let θ(y,m) be a function of income, y, and the

macro shock, m to capture the idea that households are less inclined to spend their money on cars

during downturns and when income is low. The utility of driving is a 2nd-order polynomial in k,

allowing for heterogeneity in the marginal utility of driving through γ(y, s, a′,m) and a concave

relationship, with a diminishing marginal utility of driving, i.e. φ < 0.11 The coefficient δτ is a

car-type fixed effect, δn is a coefficient on a new car dummy, and q(a′) is a 2nd-order polynomial

in car age, capturing the rising maintenance costs with car age and ensuring scrappage. This

helps to both fit the share of the no-car state as well as fitting the relative shares of the different

car types in the data. Finally, recall T (d′; d; p;m) is the trading cost function defined above.

We assume that driving does not affect the value of a car once we condition on it’s age

and type, such that that the driving decision is separable from then car ownership decisions.

The next period value function is therefore independent of k, such that the consumer’s optimal

planned driving is a fully static problem

k∗ = arg max
k

u(k, τ, a, p,m).

The first-order condition for the optimal driving implies that

k∗ =
θ(y,m)pkm(a, τ)− γ(y, s, a,m)

2φ
.

We specify the heterogeneous parameter affecting the utility of driving as

γ(y, s, a,m) = γ0 + γ1a+ γ2a
2 + γ3s+ γ4s

2 + γ5m+ γ6y + γ7y
2,

Note that the optimal driving equation has no error term since we are considering the planned

driving by the consumer. To take the driving equation to the data, we will think of the driving

variable to be observed with measurement error. Finally, to capture that households are less

inclined to spend their money on cars during downturns and when income is low, we allow

dependence on the macro conditions, m, and for a diminishing marginal utility of household

income, y,

θ(y,m) = θ0 + θ1y + θ2y
2 + θ3m.

Inserting γ(y, s, a,m) and θ(y,m), in the equation for the optimal k, we obtain the following

11In the estimation, the function is monotone everywhere and predicts only strictly positive driving.
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linear equation

k∗ =
1

2φ
(θ0 + θ1y + θ2y

2 + θ3m)pk(a, τ)− 1

2φ
(γ0 + γ1a+ γ2a

2 + γ3s+ γ4s
2 + γ5m+ γ6y + γ7y

2)

(3.23)

= κ0 + κ1a+ κ2a
2 + κ3s+ κ4s

2 + κ5m+ κ6y + κ7y
2 + (κ8 + κ9y + κ10y

2 + κ11m)pkm(a, τ),

(3.24)

where κj = −0.5γj/φ for j = 0, ..., 7 and (κ8, κ9, κ10, κ11) = 0.5(θ0, θ1, θ2, θ3)/φ. The κ parame-

ters are identified from this equation alone, implying that the structural parameters in θ(·) and

γ(·) are identified up to a normalization by φ. However, in the full model, all parameters are

identified. We return to this in section 4.

3.3 Specification of the Transition Densities

In this section, we specify the stochastic structure of household income, yit, fuel prices, pt, and

the macro state, mt. We introduce the subscript i for households to emphasize that income

varies across households and over time while the macro state and fuel prices are common to

all households. We introduce the subscript t to more quickly clarify the time dimension of

transition. We will also use this notation in the remainder of the paper.

For the income transition density, gs(yit|yit−1, pt,mt, pt−1,mt−1), we assume that income

follows a log-normal AR(1) process with an age profile,

log yit ∼ N
(
µy, σ

2
y

)
. (3.25)

where µy is given by

µy = ρ1 log yit−1 +ρ2sit+ρ3s
2
it+ρ4mt+ρ5mt−1 +ρ61{mt=1∧mt−1=0}+ρ71{mt=0∧mt−1=1} (3.26)

The coefficients ρ6, ρ7 allow for flexibility in the first year of a boom or a bust which will allow us

to accommodate some of the sluggishness in the income processes that we observe in the data.

We next assume that log fuel prices follow a random walk. Anderson, Kellogg, Sallee and

Curtin (2011) provide evidence using the Michigan Survey of Consumers that this is consistent

with consumer expectations about the evolution of fuel prices. More precisely, we assume that

log pt ∼ N
(
log pt−1, σ

2
p

)
. (3.27)

Finally, we assume that the binary macro state, m ∈ 0, 1 follows a Markov process with

transition probabilities Pr(mt = j|mt−1 = l) for j, l ∈ 0, 1.12

12To extend this further, we could allow the transition probabilities for the macro indicator to be conditional
on fuel prices, since fuel prices might be informative about the Danish macro state. The mechanism is that fuel
prices proxy for oil prices which proxy for world demand.

38



4 Estimation of the Model

In this section, we outline our strategy for estimating the proposed model using the Danish

register data. We first explain some details before we get to the full likelihood function. After

this, we outline a “two-stage” estimation strategy to simplify the estimation.

The detailed Danish register data enable us to identify the type of car and its age (τ, a) for

every Danish household that owns a car, and the type and age (τ ′, a′) of a replacement vehicle

for any household that trades a vehicle. So we construct a panel dataset {di,t, xi,t, ki,t} based

on a large random sample from our data which contains all Danish households, i = 1, . . . , N

over time periods t where di,t is the car holding/trading decision by household i during year t

(including the scrappage decision), ki,t is the vehicle kilometers traveled for households owning a

car, and xi,t are other household level variables we include in our dynamic programming model,

the most important of which are the age of the household head si,t and the household’s income

yi,t. We do not observe scrap prices in the data.13 Instead we assume that they are equal to the

used car price at the maximum age as indicated by the scrappage rates we have from DAF (the

Danish Car Dealer Association). That is, we assume that

P (τ, p,m) = ζ āτP0(τ),

where P0(τ) denotes the new car price we observe in the data (merchant suggested retail price,

MSRP), and ζτ is the depreciation factor.14

Given the one year decision time intervals in our model, we fix a particular time at which

decisions are assumed to take place for purposes of matching the model to the data. Specifically,

we assume decisions are made on January 1 of each year. We also assume that income yi,t

represents total income (after tax) in the present year and the age variable sit is the age of the

household head as of January 1.15 For the decision variable, we assume that a decision pertains

to the coming year and so a household is recorded as trading its vehicle if we observe a sale

between January 1st of the year and December 31st of that year.

We solve the dynamic discrete choice model using backward induction. There is no bequest-

motive in the final period but we solve the model with a maximum age of 85 even though we

truncate our dataset, setting all household aged above 80 to be 80. For the continuous state

variables, we use Chebychev-polynomials to approximate the expected value function, which is a

very smooth object. The integrals in the transitions are solved using Gauss-Hermite quadrature,

which we have found to be superior to simulation based integration given that they are basically

univariate integrals.

In order to solve the model we need to evaluate it at a set of used-car prices. So far, when

we have talked about the used car price system, P (τ, a, p,m), we have loosely discussed this as

13The scrappage subsidy paid out by the Danish Ministry of the Environment equals 1,500 DKK.
14On average in the data, ζτ is around 0.88. Unfortunately, we do not have variation over time but from

correspondence with DAF, the depreciation rates are rarely updated over time. This is why we view them as
unrealistic for the actual average transaction prices in a given year. However, the rates are only suggestive,
so dealers will most likely be varying their margins around these, which are only available to dealers that are
members of DAF and pay for the data.

15Alternatively, one could use income data for the previous year to make sure that car decisions are made
conditional on income already earned.
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the consumers belief about used-car prices in the single-agent model. However, when we zoom

out and look at the market as a whole, we may start to think about what prices will equilibrate

the market in a given year t. We will therefore distinguish between the household-level beliefs

about prices, P (τ, a, p,m), and the market-level prices, P (τ, a, t). Instead of diving directly into

a joint estimation of both structural parameters and equilibrium prices, our strategy for taking

the model to the data proceeds in two steps; in the first step, we will read in a set of initial used

car price functions based on the suggested depreciation rates, ζτ . Our approach for solving for

equilibrium prices is outlined in Section 5. Therefore, we start by solving using the price system

P (τ, a, p,m) = ζaτP (τ, 0), ∀p,m,

where the used-car prices do not vary over the business cycle.

Another part of estimation involves estimating an income process for households to create the

transition probability gs(y
′|y, p′,m′, p,m) and the process h(p′,m′|m, p) for the macro shock and

the gasoline prices described in section 3.3. We follow Rust (1985b) and estimate the transition

densities separately in a first stage.

We also wish to include the data on driving and scrappage in our estimation. In order

to leverage the driving information, we assume that driving in the data is contaminated by a

Gaussian IID measurement error. Thus, the partial likelihood contribution from the driving

equation is given by

fk(ki,t|xi,t;ϑ) = Φ

[
ki,t − k∗(xi,t;ϑ)

σk

]
,

where Φ denotes the standard normal density. The partial likelihood contribution from the

scrappage decision has already been derived and is given by the logit formula in equation (3.11).

It will only apply for households choosing to scrap. This component will be key to identifying

the scaling parameter in the scrappage decision, λ. In fact, for a given full set of car prices and

scrap prices, we can estimate λ offline in a first stage. These frequencies are shown in Figure

B.7. However, including the scrappage probability in the full likelihood may prove once we start

to change the other used-car prices since that will affect scrappage.16

Let ϑ contain all parameters jointly. The log-likelihood for the full sample is

L(ϑ) =
N∑
i=1

∑
t∈Ti

log
{

Pr(di,t|xi,t;ϑ)fk(k|xi,t;ϑ)[Pr(di,t,s|xi,t)]1{di,t,s 6=0}
}
, (4.1)

where the conditional choice probability for the car decision, di,t, is given by (3.14) and Ti
denotes the years where we observe household i. Recall that di,t,s denotes the decision whether

to sell the in the secondary market di,t,s = 1, get rid of the vehicle (di,t,s = 0) or scrapping the

car ( di,t,s = −1) for household i and time t. Hence, 1{di,t,s 6= 0} is an indicator for the decision

involving the consumer getting rid of a vehicle where the household must make a decision about

whether to scrap or sell at the used car market.

We then maximize the log-likelihood using analytical gradients and a range of common

optimization algorithms, including BHHH and several quasi-Newton algorithms. We have also

16In the empirical application, we have kept λ fixed at 0.9.
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used the gradient-free optimizer, Nelder-Mead, which has proven helpful whenever the gradient-

based methods got “stuck” in the sense that they could not improve the likelihood along the

gradient.

To simplify estimation, we start out with a “two-stage approach”; in the first stage, we

estimate the κ parameters in the driving equation (3.23). Let k∗i,t(κ) denote the predicted

driving for household i at time t. We can now solve the model, inserting this predicted driving

from the first stage wherever we need the driving and keeping the κ-parameters fixed while

searching over the remaining parameters. Formally, we solve the model replacing the flow utility

with:

u
[
k∗(κ), τ, a, s, p,m

]
= θ(y,m)[y − pk(τ, a, p, co)k∗(κ)− T ] (4.2)

+ γ(y, s, a,m)k∗(κ) + φ[k∗(κ)]2 − q(a) + δn1(a = 0) + δτ .

Then we use the following 2nd stage likelihood function,

L2step(ϑ) =

N∑
i=1

∑
t∈Ti

log
{

Pr(di,t|xi,t, ;ϑ, k = k∗(κ))[Pr(di,t,s|xi,t, k = k∗(κ))]1{di,t,s 6=0}
}
, (4.3)

where the conditioning on k = k∗(κ) is to indicate that the model should be solved using the

flow utility given in (4.2). Note that we are still searching over the same parameters as when we

use the full likelihood from equation (4.1); the γ- and θ-parameters are identified by the discrete

choice alone. In a sense, this two-stage approach is similar to thinking of the predicted driving,

k∗i,t(κ) as a characteristics of the chosen car, d′i,t. The two-stage approach breaks the otherwise

very strict cross-equation restriction that the consumer should care equally much about money

spent on buying and selling the car and money spent on driving the car. However, we can check

if the estimated γ- and θ-parameters divided by φ correspond in magnitude to the respective

κ-parameters as a test of the cross-equation restrictions.

5 Solving for Equilibrium Prices

In this section, we present our strategy for modeling used car prices. We first describe the con-

sumer expectations, which we simplify here. We then outline first how we solve for equilibrium

prices in-sample and then out-of-sample (for simulating forward in time). In Section 5.3 we will

discuss an alternative approach using different assumptions.

5.1 Solving for Equilibrium Prices

We follow a literature stretching back to Rust (1985c) that estimates equilibria in both primary

and secondary markets using an equilibrium price function. A key feature of our approach is

that we relax the stationarity assumption. Specifically, we allow for the effects of macroeconomic

shocks and changes in fuel prices, which was shown to play an important role in the U.S. vehicle

fleet in Adda and Cooper (2000b) and our data suggests in the case in Denmark as well. We

combine this with equilibrium price adjustments, which was shown to be important by Gavazza,

Lizzeri and Roketskiy (2014).
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To do this, we will allow used car prices to vary freely over time, but assume that consumers

have stationary expectations regarding the prices of cars in the sense that consumers expect

that the used car price system they observe today will be the same tomorrow. While this for

example neglects how equilibrium vehicle prices in the future could depend on future macro

conditions, gasoline prices and the distribution of vehicles in the used car market, we think

this is a reasonable approximation that will, in principle, allow us to precisely equate supply

and demand for all car types and ages in every single year. We will discuss the alternative

approach of solving for a price system as a function of (p,m), where consumer expectations are

non-stationary, but do not solve exactly for equilibrium in a given year.

To explain our strategy for finding equilibrium, we will first go through an approach based on

simulated realized excess demand to fix the intuition. We then outline our preferred approach,

based on what we call the expected excess demand. The first strategy for finding equilibrium

prices P (τ, a, t) proceeds as follows. Just as in previous literature, we search for a vector of

prices P (τ, a, t) that will set excess demand to zero for vehicles for all vehicle types and ages and

in each time period t. These excess demand functions arise as aggregations of the individuals’

actions; since households are simultaneously the supply and demand side of the used car market,

we can find excess demand for car (τ, a) by taking the sum of individuals purchasing the car

and subtracting the sum of individuals selling it. We will not work with this “realized excess

demand”, however, because it will be an unwieldy criterion function to work with numerically

since it will be locally flat. The reason for this is that, holding uniform draws fixed, a small

change in a given parameter value might not induce any consumer to change their discrete choice

and when it does, the change will be discontinuous for the same reason. For this reason, we will

instead work with the “expected excess demand”, ED(τ, a, S, P ), where S denotes the matrix

containing all cars and households and P is the price system. We define ED as

ED(τ, a, S, P ) =
N∑
i=1

Pr
[
d′ = (τ, a)|di,t, xi,t;P

]
−

N∑
i=1

{
1− Pr

[
d′s = 0|di,t, xi,t;P

] }
1(di,t = (τ, a)),

(5.1)

for a ∈ {1, ..., ā− 1} and all τ.

Note that ED(τ, 0, S, P ) = ED(τ, ā, S, P ) = 0 by assumptions discussed earlier.17 The first

term in equation (5.1) is the expected demand for (τ, a)-cars. The second term is the expected

supply of these cars, given by the sum of probabilities not to keep the car for the households

that own a car of type (τ, a). This is an important distinction between expected demand and

supply; all households contribute to the demand for all cars but they only contribute to the

expected supply of a car if they own that car. Since the choice probabilities are continuous in

prices, ED will be continuous.

Our algorithm therefore proceeds on a year-by-year basis. Consider year t in our sample; let

Pt denote a vector of prices. We then calculate ED(τ, a, St, Pt) for each τ and for a ∈ {1, ..., ā−1}
17As discussed earlier, Denmark is a small country without domestic car production, so ED(τ, 0, S, P ) = 0 is the

“small open economy” assumption that Danish demand does not move the world car prices. The assumption that
households cannot trade cars of the oldest age implies that these cars will always be scrapped at the exogenous
scrap price, which means that ED(τ, ā, S, P ) = 0.
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and stack them in the vector ED(St, Pt). If we have one price for each car category, the price

system P (τ, a, t) is fully non-parametric and we can solve the non-linear system of equations,

ED(St, Pt) = 0. (5.2)

If we have fewer prices than there are car classes, then we will not generally be able to solve

the system and we can instead choose the prices that “do best” in the sense of minimizing

‖ED(St, Pt)‖, where we might for example use the regular L2 norm. This paper makes no claim

as to uniqueness, but we have successfully solved (5.2) using real data, so existence is proven

constructively for our situation. The conditions under which equilibrium prices exist are left for

future work.

When working with the non-parametric specification in (5.2), we found that it was essential

to use analytic gradients and an advanced root-finding algorithm. This is because cars (τ, a) and

(τ, a+ 1) are very close substitutes, so the cross-derivatives are extremely important to account

for. Once that was done, the algorithm converged nicely with excess demands on the order of

10−10.

5.2 Simulating Forward in Time

We simulate forward in time by recursively solving for equilibrium and simulating one step

ahead. Let P ∗(St) denote the equilibrium prices that set excess demand to zero in (5.1) given

the car distribution St. Let Γ(St+1|St, Pt) denote the density of the next-period state variables.

It is a sequential density in the sense that to draw from it, we first draw the discrete choice

from the conditional choice probability (3.14). Next, we can take draws of the remaining state

variables from their respective transition densities. Finally, if an accident occurs, the household’s

car is destroyed and their simulated car state becomes the no-car state. Note that the fuel price

and the macro state are synchronized across households; since these are exogenous, we can draw

them without regard to the individuals’ car choices.18

The recursive simulation proceeds as follows in the rth step: Given Sr, find the equilibrium

price vector P ∗(Sr). Then simulate next-period states from Γ[·|Sr, P ∗(Sr)]. Proceed until the

desired number of simulated periods has been reached.

By simulating this way, we ensure that cars do not appear out of nowhere and do not

disappear, except for scrappage or accidents. Without equilibrium prices adjusting, the number

of cars of type (τ, a) may be higher or lower than (τ, a− 1) in the previous year. Note, however,

that we do not impose this; the equilibrium prices guarantee that it will be the result. The

exception is of course simulating noise in drawing from Γ.

Since we want to simulate data from the model forward in time, we need to think about

households reaching the maximum age. We handle this by letting a new household enter the

sample at the youngest age whenever a household reaches the oldest age and dies. This new

household will be born with the dying household’s car endowment to make sure that cars do

18The macro state could in principle be allowed to depend on the car purchases since new car sales are well-
known to precede upswings. However, we cannot allow households to form expectations about this since that would
require knowledge about not only their own actions but the actions of everyone else, which requires knowledge
about the full cross section, St.
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not disappear out of the economy and cause a mismatch of supply and demand over time. This

will ensure that the population and the car stock remains representative.

5.3 Non-Stationary Expectations

The approach outlined in the previous section can be expanded to relax the assumption of

stationary expectations. However, the problem is that the equilibrium prices, defined as setting

excess demand to zero, will in general be a function of the full age distribution in addition to the

other state variables. To solve a model where households form expectations based on this would

ordinarily require carrying carrying the entire age distribution of vehicles as part of our vector

of state variables. This may be possible in a dynamic programming model with a very limited

number of types of vehicles, but quickly becomes infeasible due to the curse of dimensionality.

An alternative and more pragmatic approach is to follow Krusell and Smith (1998) and assume

that equilibrium vehicle prices can be well predicted using a much smaller-dimensional set of

“sufficient statistics,”, for example the price of gasoline and the macro state (p,m).19

To implement this approach, we would choose some parameterization, P (τ, a, p,m) = P (τ, a, p,m;ϑP ).

For any trial value of the parameters indexing ϑP , we can calculate the excess demand for all

our sample years. From this starting point, we can search for the value of ϑP that yields the

smallest excess demand across years. Consumers would have “correct” expectations about fu-

ture used-car prices but in any given year, the market might be out of equilibrium. This would

imply that the model would do worse in terms of matching the waves in the car stock that

we observe in Figure 2.1. For this reason, we choose to maintain the assumption of stationary

expectations and leave non-stationarity for future work.

6 Results

This section presents the results from estimating the model. We start with a discussion of the

practical implementation and the choices and simplifying assumptions we have made. We then

present the results from the first-stage estimation of the driving equation and then the full set

of structural parameters. We present a range of results illustrating the fit of the model and

finally show a simulation of the car stock forward in time. After this, we turn to solving for

equilibrium prices in all the sample years and analyze the in-sample fit under equilibrium prices.

We then present a forward simulation with equilibrium prices and compare the waves in the

car stock to those generated by the non-equilibrium model. Finally, conduct a counter-factual

policy experiment, comparing the predicted response with and without equilibrium prices.

6.1 Implementation

The results presented below are carried out for a 1% random subsample of the households in our

data where nothing else is noted.20 This is done to ease the computational burden of estimating

19Krusell and Smith also include the average value of the individual specific savings as a sufficient statistic. We
could similarly add the average vehicle age to the households’ state variables but we choose the simpler route and
see how far we can get in replicating the fleet dynamics by using only gasoline prices and the macro state.

20The subsampling is over households, so we select all observations for a given household if it is selected. This
is to ensure that we have a panel. Since we do not exploit the explicit matching between the buyers and sellers
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the model and solving for equilibria where the primary constraint is the number of observations.

For the fuel price process, we assume them to follow a random walk according to equation

(3.27) and estimate the variance on the innovations, σp, as the standard deviation of the change

in real log fuel prices from 1972–2013 to be σ̂p = 0.0693. We have estimated different versions

of the AR(1) income process and the estimated coefficients are shown in Table A.1. While we

can reproduce the life-cycle path in income very clearly, we found the surprising result that

the coefficient on the macro dummy (ρ4) got a negative sign. In Appendix A, we furthermore

show estimates from an AR process for labor income only, which also produces a negative macro

dummy (Tables A.2). We believe that the problem is related to the very mild recession in 2001–

2003, which actually saw higher growth rates than in most of the years of the boom in the 1990s

(Table A.2). To avoid the problems that these counterintuitive transition rates might introduce,

we have chosen to estimate a model where households expect that their income will never change

(i.e. ρ1 = 1, σy = 0 and ρj = 0 for j > 1). This will shut down the life-cycle perspectives that

there might otherwise be in the model with regard to for example young households expecting

to earn more in the future.21 However, we still utilize the cross-sectional distribution in income,

which will generate gains from trade as richer household buy newer cars and hand them down

to households with lower incomes.

To solve and estimate the model, we must make choices on discretization. We choose to have

25 age categories, making the maximum car age ā = 24. This is because by age 24, we have seen

the larger part of the waves in Figure 2.1 die out due to scrappage. For the household age, we

solve the model with a maximum household age of 85. When a household in the model becomes

85 years old, it dies and there is no bequest motive in the model, so households close to this age

may choose to sell their cars and eat all they have since there is no continuation value to owning

a car. To avoid this behavior, we top code all households aged 80 and above as being of age 80.

Regarding prices, we take the MSRPs and take the unweighted average within each of the two

car types in each year to construct the new car prices. We do the same with all car characteristics

as well as the DAF suggested depreciation rates, ζτ . We fix the scrap price so that it equals the

price of a 24 year old car, i.e. P (τ, p,m) = ζ āτP (τ, 0, p,m).

We choose to use the “two stage” estimation procedure outlined in Section 4: we start by

estimating the κ-parameters in the driving equation (3.23) in a first stage. Then we use the

κ-parameters to predict driving and use that in the flow utility as shown in equation (4.2), and

find the structural parameters by maximizing (4.3).

6.2 First-Stage Results

To make matters simpler, we estimate the parameters from the driving equation in a first step

and keep those fixed in the estimation of the remaining structural parameters. This greatly

limits the number of parameters to be estimated. We estimate these parameters on the 1%

subsample, where we pool all the driving observations from households who have a car (111,231

households). For the estimation, we have used individual-level variation in fuel prices, matching

in the market, the random subsampling will not affect our results beyond precision.
21Recall that the most common ownership length is 5 years (Figure 2.7). If households had held on to the

same car from new until scrappage, assuming away the life-cycle aspects of income growth would have been a
considerably worse assumption.
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Table 6.1: First-stage Driving Estimates

Main effects
Variable Estimate std.err.

κ0 Const 35.74∗∗∗ 0.9359
κ1 Car age -0.3444∗∗∗ 0.0197
κ2 Car age sq. 0.002467∗∗ 0.0009
κ3 m -19.63∗∗∗ 0.7554
κ4 Inc -0.0004118∗∗∗ 0.0013
κ5 Inc sq. 3.826e-07∗∗∗ 0.0000
κ6 HH age 0.3178∗∗∗ 0.0147
κ7 HH age sq. -0.004956∗∗∗ 0.0001

Price interactions
Variable Estimate std.err.

κ8 PPK -26.46∗∗∗ 1.2110
κ9 PPK*inc 0.0007932∗∗∗ 0.0019
κ10 PPK*inc sq. -5.81e-07∗∗∗ 0.0000
κ11 PPK*m 27.34∗∗∗ 1.0711

Avg. PPK-elasticity -0.6652
R2 0.1030
N 111231

Data for all years 1996–2009 is used.

the daily fuel prices to the driving period at the daily level. This considerably increases the

variation and we found that only relying on annual fuel prices gave insufficient identifying power

to adequately identify the price parameter and, in particular, the interaction effects. The results

are shown in Table 6.1.

The driving results imply an elasticity of the Price Per Kilometer (PPK) of –0.67. This

elasticity is not out of bounds from what has been found elsewhere but perhaps a bit on the

high side, compared to the findings of Munk-Nielsen (2015). However, if we were to include a

more flexible functional form, accounting for more observable heterogeneity, this elasticity does

go down. Since our model limits us by the state variables, we go with the results in 6.1. In

Table B.3, we show regressions corresponding to the first stage specification in Table 6.1, but

adding the heterogeneity sequentially and on the full dataset. The results differ somewhat for

the full sample, resulting in higher PPK elasticities. We discuss this more in Appendix B.4 but

choose, for consistency, to use the κ-estimates coming from the same sample that we use for the

estimating the full structural model.

While a simultaneous estimation of the driving parameters and the remaining structural pa-

rameters is superior to this two-stage approach, it is not completely unrealistic. This approach

breaks the tight cross-equational restriction imposed in most discrete-continuous models, yield-

ing more flexibility for fitting the data but at the cost of internal model consistency.
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6.3 Structural Estimates

The estimates shown below are based on the 1% subsample and only the cross sections for the

years t = 97, 99, 01, 03, 05, 06 are used; we have used only a subset of the periods to reduce the

computational burden required for estimation and we found that adding more years did not

substantially change our estimates. We only include the intercept in the utility of driving (γ0)

and fix γj = 0 for j > 0, since heterogeneity in the realized driving is already accommodated

by the reduced-form driving parameters (the κs).22 Standard errors are estimated based on the

inverse of the Hessian at the estimated parameters.

In estimating the model, we found that the transaction cost parameter deserved extra at-

tention. In the literature, this has often been estimated to have relatively high values (e.g.

Schiraldi, 2011) but we have found much higher estimates than what we have seen in the lit-

erature. Therefore, we estimate two versions of the main specification; one where we estimate

the transaction costs and another specification where we keep it fixed at an a priori sensible

level. For the latter, we choose a fixed cost of 10,000 DKK and a proportional cost of 20% of

the traded car’s value. If anything, we feel that these are somewhat high. However, we found

that by increasing transaction costs and lowering the utility of money (θ0), the likelihood did in

fact increase. Our preferred estimates are from the model where we estimate fixed transaction

costs and fix the proportional transaction costs to zero becuase it provides a superior fit of the

data.

Our preferred estimates are shown in Table E.1. Most notably, the fixed transaction cost

parameter (b2) is estimated to be 233.33. Since money is measured in 1,000 2005-DKK, this

corresponds to 233,330 DKK or the equivalent of two-thirds of a new car’s price. We fix the

proportional transaction cost (b1) to zero.23 We find this estimate too high to be reasonable but

acknowledge that given the rest of the model, households are behaving as if transactions costs

were so high. We note that transactions costs proxy for any source of frictions that might exist in

the market, including psychological costs, asymmetrical information costs (lemons premia), etc.,

so they may of course be higher than the purely monetary cost of buying a car. Nevertheless,

the high transaction cost parameter can also be seen as a sign of misspecification somewhere

in the model. One possible explanation is related to curvature in income; it might be that the

utility of money relevant for making driving decisions is much lower than the utility of money

that applies when making car purchase decisions.24 We think that extensions of the model in

these directions might prove valuable for getting more reasonable transaction cost estimates.

The remaining parameter estimates are sensible; γ̂0 > 0 so that households tend to prefer the

22Including the γ-heterogeneity parameters seems futile since a more fruitful long-term goal would be to jointly
estimate the driving parameters and the rest of the structural discrete choice parameters. Then, the κs would
not be used and the driving equation would help give identification power to the γ-heterogeneity terms.

23We have tried estimating both the fixed and proportional transaction costs, b1, b2, but found that the likelihood
function was maximized for negative proportional transaction costs (b1 < 0). This is theoretically impossible, so
we chose to just fix b1 = 0 and estimate b2.

24Specifically, we have in mind a model where households are liquidity constrained. Then the choice to purchase
a new car might push the household down into a region where the utility of money is much higher. Fuel costs, on
the other hand, are not really paid up front such as it is indicated by the flow utility, but are paid weekly. In a
quasi-linear model, this makes no difference, but in a model with curvature inthe utility of money it can make a
big difference. In fact, the macro term shifting up and down the utility of money is already something we think
of as an approximation to the shadow value of money changing as the household’s risk of becoming unemployed
changes.
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Figure 6.1: Model Fit: Conditional Choice Probabilities (CCPs)
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types of cars that are also associated with high driving (coming from k∗(κ)). We also find that

the utility of money is positive, θ̂0 > 0, and that the interaction with the macro state is negative,

θ̂3 < 0; this indicates that in bad macro times, money becomes more dear to households. This

effect can be thought of as proxying for the changing shadow value of money as risk increases

or as credit becomes tighter.

Next, we turn to the fit of the model for these parameter values. Figure 6.1 shows the

model fit in terms of the choice probabilities (observed and predicted), here shown for the

2002 cross-section.25 We note that in particular the age profile in demand tracks the observed

transaction frequencies quite closely. There are, however, deviations; for car ages 3 and 4 and

for 14–18, we under-predict. These are examples where the fixed depreciation rates appear to

be unrealistic. Nevertheless, the model appears to get the overall functional form of the keep

probability over the car age right on average. The figure also shows that we are under-predicting

used-car purchases for car-owning households and over-predicting the purge decision. Similarly,

we under-predict the number of no-car households staying in the no-car state. This might be

because a lot of the heterogeneity in the keep decision appears to be related to life-cycle patterns

(cf. Figures 2.4 and 2.5). We conjecture that the fit would be improved if the heterogeneity

parameters in the driving utility (γj , j > 0) were estimated. Alternatively, it might be that the

fact that households expect their incomes to be constant is causing this; when young households

believe that it will increase shortly, it will make sense for them to postpone purchasing a car to

a period where the utility of money is lower because their income is higher.

To explore the fit of the model by state variables, Figure 6.2 shows the predicted choice

probabilities by four of the state variables for the 2002 data. To do this, we must choose one

25We have chosen to consider model fit for a single year because pooling the years is complicated by the fact
that the choice set changes over time (and in principle, policy parameters might change over time although we
have not pursued this).
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Table 6.2: Structural Estimates — Estimated Transaction Costs

Variable Estimate Std.err.

Model setup

Min. Hh. age 20
Max. Hh. age 85
# of car ages 25
# of car types 2
Clunkers in choiceset 1

β Discount factor 0.95
ρ Inc. AR(1) term 1
σy Inc. s.d. 0
ρp Fuel price AR(1) term 1
σy Fuel price s.d. 0.0699
Pr(0|0) Macro transition 0.75
Pr(1|1) Macro transition 0.8

Accident prob. 0.0004
λ Logit error var. 1
λscrap Scrappage error var. 0.9

Monetary Utility

θ0 Intercept 0.032508∗∗∗ 0.0001248
θ1 Inc. -2.664e-05∗∗∗ 2.038e-07
θ2 Inc. sq. 2.7409e-08∗∗∗ 2.063e-10
θ3 Macro -0.0011238∗∗∗ 2.307e-05

Driving Utility

γ0 Intercept 0.046713∗∗∗ 0.0004668
γ1 Car age 0
γ2 Car age sq. 0
γ3 Hh. age 0
γ4 Hh. age 0
γ5 Macro 0
γ6 Macro 0
γ7 Macro 0
φ Squared VKT 0

Car Utility

q(a) Car age, linear 0.073057∗∗∗ 0.000819
q(a) Car age, squared 5.7638e-05 3.249e-05
δ1 Car type dummy 0.64764∗∗∗ 0.01111
δ2 Car type dummy 0.14377∗∗∗ 0.01184

Transaction costs

Fixed cost 223.33∗∗∗ 0.8837
Proportional cost 0

N 169,733
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particular discrete choice, so we choose to focus on the “keep” decision, since it captures much

of the dynamics in the model. The top left panel shows the fit for income. First, income is

divided into bins according to quantiles of the income distribution. Within each of these bins,

the figure shows the average probability of choosing keep according to the model predictions

(evaluated at the state variables in the 2002 data) and observed in the data. The figure does

not condition on car ownership so “keep” may mean to keep a car or to remain in the no-car

state (which probably explains some of the heterogeneity over the income distribution). The

figure shows that the model predicts a strong U-shape over the income distribution but that the

data has a much flatter distribution. This indicates that while high-income households in the

data do care less about money, the predictions of the model have an even stronger relationship

(working through θ1, θ2). In the top right panel, the fit over household age is shown. For each

age, the average probability of keeping is shown for the model prediction and the data. Here,

the reverse is the case; the data shows a much stronger U-shape than the model prediction.

This is probably because household age affects neither θ(·) nor γ(·) but only works through the

first-stage predicted driving (κ6, κ7). In the lower left panel, the fit is evaluated by car age. This

panel is only based on car-owning households and for each car age group, the average predicted

and observed probability of keeping is matched up. The figure shows that the model captures the

keep probability over car age very well. Finally, in the lower right graph, we show the fuel price.

Since there is only one fuel price per year, this just shows the average probability. This serves

as a reminder that it is hard to compare the model fit in terms of the fuel price because there

is just one fuel price per year. The panel also indicates that we are on average under-predicting

the keep decision.26

Finally, we present a simulation forward in time from the model to illustrate how the car age

distribution of cars develops for these estimated parameters. To do this, we take the dataset

in 2002 as the baseline. Then we iteratively compute choice probabilities and simulate choices

and subsequently simulate the next-period-states, i.e. drawing form the density, Γ(·|St, Pt) from

Section 5.2, using the DAF used-car prices for Pt. We choose to keep car and fuel prices fixed at

the 2002 values in the simulation but simulate the macro process, which is synchronized across

all agents. The resulting simulated car age distribution is shown in Figure 6.3 and the simulated

macro process is shown in Figure E.5.

First off, we do not see the clear macro waves in the car age distribution in 6.3 that we

observe in the actual data (Figure 2.1). There is a wave at the beginning of the simulation,

coming from the large number of 2–6 year old cars in the initial car stock in 2002. This wave

gradually dies out and does not proceed all the way to the age where scrappage starts to kick in.

This is because the only thing coordinating the agents’ trading behavior is the macro dummy,

which shifts up and down the utility of money. We do see some tiny waves in new car purchases

and some ridges of these cars being held but they die out in a few years. This is because used-car

prices are fixed and do not adjust to match demand and supply of car vintages. Eventually,

if the macro state became degenerate, the car age distribution would just be a standing wave,

26For the households that choose to own a car, we have the fuel price matched to the realized driving period.
However, it is not given that the household will keep the car for the entirety of the driving period, which may be
two or four years. Thus, if we were to use the cross-sectional variation in fuel prices due to the precise start date
of the driving period, we would be conditioning on past and/or future decisions in addition to the current and
the variable would in particular not be available for households choosing not to own a car.

50



Figure 6.2: Model Fit by State Variables: The Keep-decision
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reflecting the choice probabilities by car age that was indicated in Figure 6.1. Finally, note that

the only thing creating the small “waves” present in Figure 6.3 is transactions costs forcing the

same people to hold on to the same cars over time. As we shall see later, with equilibrium prices

re-adjusting, we can have lots of trading along the ridges of the car age distribution.

Appendix E.1 presents results from the model where transaction costs are kept fixed at

lower values. Table E.1 show parameter estimates where we have kept transaction costs fixed.

Here, the utility of money, θ0, is estimated to be much higher (0.140 vs. 0.033). With these

estimates, the model under-predicts keep probabilities substantially, leading to too much trading.

Simulations from the model produces a car age distribution that looks very unrealistic (see Figure

E.3).

6.4 Equilibrium Prices: In-Sample

We now start to solve for equilibrium prices. Holding fixed the structural parameters, we

loop over each of the years from 1996 to 2009 and search for the equilibrium prices that set

expected excess demand equal to zero. These prices are shown in Figure 6.4. A few things

are worth noticing; firstly, the price schedule is nicely behaved, downward sloping and convex,

as expected. Secondly, we see that the first-year depreciation increases over time. This large

first-year depreciation will tend to lower the demand for new cars, but note that the equilibrium

solver is un-affected by what happens to the demand for new cars since there is zero excess

demand there by assumption. Secondly, we note a dip in prices in 2008, which appears to be

proportional across age groups. From closer inspections, we found that the model fits quite

poorly in 2008 and predicts that too many car-owning households should sell their cars. The

explanation may well be the spike in real fuel prices for both gasoline and diesel in 2008 (cf.

Figure B.1); if this causes all households to want to sell their cars, the equilibrium prices will
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Figure 6.3: Forward Simulation from the Non-equilibrium Model
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adjust downwards to counteract that and keep the market in equilibrium. Finally, we note that

we do not see major waves traveling down the price schedule. As we shall see later, however,

the waves are quite clear when we look at the annual depreciation rates rather than the actual

prices in levels.

Next, we turn to comparing the predicted market activity to the realized one under the

equilibrium prices. Figure 6.5 shows 4 panels; the first panel shows the negative log differences

of figure 6.4, giving the annual depreciation rates implied by the equilibrium prices (i.e. the

% the used car price falls by when it ages one year). In this graph, it is easier to see waves

traveling through — two such “waves” are noticeable as small dents traveling along the diagonal

of the xy-plane (i.e. tracking a particular cohort of cars). The depreciation rates look somewhat

jittery for the higher ages, which is mainly because there are few of those cars.27 The upper

right panel shows the car age distribution over time and here we notice, that the waves in the

car age distribution (coming from past macro shocks traveling through in time) coincide with

the waves in the depreciations (upper left panel).

The two lower panels show the number of transactions occurring from the data and predicted

from the model using the equilibrium prices.28 First off, we note that both the predicted and

the actual number of transactions by age-category clearly mirrors the car age distribution.

In particular, we see more transactions for the abundant car age groups. The predicted and

observed transactions disagree in terms of how the number of transactions generally changes

27When there are only few of a given car in the dataset, the equilibrium prices may become very high because
when the cars are rare, they will most likely be in short supply, which will push up the price to set excess demand
to zero. For the diesel segment in 1996 and 1997, there are virtually no owners of the 5 highest age groups; this
means that the price must be very high for those groups to remove excess demand. The optimizer got excess
demand to the order of 10−5 and then kept increasing the prices for higher car ages without ever converging. We
consider this a problem related to the 1% subsample.

28To predict the number of transactions, we use the fact that expected supply and demand match up to the
order of 10−5. There were a small number of car ages in a few years (particularly for the rare diesel cars) where
supply and demand were further apart than 10−3; in those cases, we took the average.

52



Figure 6.4: Equilibrium Prices: Gasoline Cars
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with the car age; in the prediction, there are clearly more transactions for car age categories

around 10–15, while there are plenty of trades even for fairly young cars in the data (see also

Figure ??). The reason why this can happen is that the equilibrium prices’ only purpose is to

set excess demand to zero; this may happen either at high or low volumes of trade for a given

car age.29

We conclude the analysis of the equilibrium model by presenting a simulation forward in

time, keeping fuel prices and the choice set constant and equal to their 2002 values but sim-

ulating household behavior moving forward (similarly to 6.3). Figure 6.6 shows the car age

distribution in this simulation. When compared wtih Figure 6.3, we see the key difference be-

tween the equilibrium and non-equilibrium models; in the non-equilibrium simulation, the car

stock converges to an approximately stationary distribution. For the equilibrium model, there

are clear waves in the age distribution, consistent with the data (Figure 2.1). The primary

difference between the simulated car stock from the equilibrium model and the real-world data

is that the booms in new car sales induced by the macro state in the simulation appear to

only last for the first period of the upswing; in the real data in Figure 2.1, new car sales are

persistently higher throughout the booms and persistently low throughout the busts. Figure

E.5 shows the macro state process and the (constant) fuel prices for this simulation. The macro

process is the same as was used for Figure 6.3. Figure E.6 shows additional details about the

equilibrium simulation, including new-car purchases, the equilibrium prices and the scrappage

pattern. The most important feature is that scrappages are highly coordinated in the model.

29In particular, if it is possible to find prices so that no one wants to trade (e.g. infinitely large transactions
costs), then that will constitute an equilibrium. We have not found such behavior to be an issue when working
with the equilbrium solver.
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Figure 6.5: Simulations Under Equilibrium Prices: Gasoline Cars
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This happens when a large cohort of cars reach the higher ages and a boom starts. The boom

starting induces everyone to want to buy a new car. However, by definition this means that the

supply of the cars held by those households increases. So if there are disproportionately more

of a given old car age, then the price of that car will have to drop a lot. Once it approaches the

scrap price, the households will start to scrap their car instead of selling it at the market. This

helps to bring excess demand to zero and therefore, the equilibrium prices will try to incentivize

the scrappage.

6.5 Counterfactual Simulations

In this section, we study a concrete counterfactual policy. We simulate the effects of the policy

both with and without equilibrium prices. The policy we are interested in is one that changes the

relative costs of ownership and usage. We therefore propose a reform that lowers the registration

tax and simultaneously increases fuel prices (for example through higher fuel taxes). Such a

reform changes the relative values of different car types and ages, making it less costly (in terms

of depreciation) to own a newer car but more costly to use cars in general, and in particular

fuel-inefficient ones.30 With the model, we can analyze the effects on type choice, car fleet age

and driving. With equilibrium prices, we are additionally able to study the immediate and

longer term effects of such a reform on scrappage. To simplify the analysis, we keep fuel prices

constant except in 2012, where we increase them exogenously. Similarly, agents expect fuel

prices to remain constant both before and after the unexpected policy intervention.

We choose to study a reform that lowers the price of new cars by 20% of the baseline price

30Figure B.10 showed that older cars were driven more intensively. The household pays a constant utility cost
of θ(y,m)pk(τ, a, p, co) per km and receives the constant utility bonus of γ0 (since γj = 0 for j > 0 and φ = 0).
Comparing these two indicates whether driving is a net benefit or inconvenience to the consumer.
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Figure 6.6: Forward Simulation with Equilibrium Prices

2000
2005

2010

Calendar year

2015
2020

202525
20

15
Car age

10
5

1500

1000

500

0
0

and raises fuel prices by 50%.31 We take the 2002 data as the base data and then we simulate

10 years ahead before we implement the counter-factual reform and simulate an additional 10

years under the new policy scheme. That is, in all graphs the reform is implemented in 2012.

First, we analyze the counterfactual using the non-equilibrium model. Figure 6.7 shows the

outcomes of the simulation. The upper left panel shows the price schedule over time; the new

car price is constant up until 2012 where it drops by 20%. The scrap price is unchanged and we

use the DAF suggested deprecation rates with no change. The upper right panel shows the car

age distribution in the simulation. The first 10 years of the simulation look like 6.3, with the

initial wave quickly dying out and the car age distribution converging to a “standing wave” in

the period up to the policy shock. After the reform, we see a shift to newer cars; in particular,

there appears to be many more 1–5 year old cars in the fleet. The lower right panel shows

purchases of used cars in the simulated data. We see that the transactions do not track the

age distribution, as expected. Similarly, the scrappage shown in the lower left panel displays no

signs of waves or coordination. Figure E.7 shows the simulated paths of the macro state and

the exogenous fuel price process to aid the interpretation of Figure 6.7.

Now, we turn to simulating the counterfactual policy using the equilibrium model. We do

this using the approach explained in Section 5.2. We use the same macro sequence for the

equilibrium as the non-equilibrium simulations and can be seen in figure E.7 (and fuel prices are

constant except for the exogenous increase of 50% in period 2012).

Figure 6.8 shows the equilibrium simulation. These simulations differ markedly from the

non-equilibrium counterparts. The car age distribution displays clear waves traveling through

the distribution that look very much like the waves we see in the real data. The equilibrium

price schedule is shown over time in the upper left panel. The prices display “ripples” traveling

diagonally through the graph, coinciding with the peaks in the car age distribution: one ripple

31These values were chosen so that the reform mainly changes the optimal car age and type without drastically
changing the number of households in the no-car state.
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Figure 6.7: Counterfactual Simulation: Non-equilibrium Prices
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starts for 1-year old cars in 2002 and one for 7-year old cars in 2002. Both of these originate

right at the end of a boom in new car sales, indicating that the cars were scrapped and replaced

with new cars (or there was a chain of trades).

Note how the prices used of used cars adjust in equilibrium when exogenously changing the

new car prices. In the non-equilibrium model this happened by construction since depreciation

rates were kept fixed at the constant DAF depreciation rates. However, in the equilibrium

model prices of used cars ar allowed to vary freely and adjust endogenously to prevent any

excess demand of used cars. When prices of new cars decrease exogenously, so does the prices

used cars - but as an equilibrium outcome of the model.

In the lower left panel, there is a spike in the scrappage in the reform year for the wave of 15–

18 year old cars. The intuition is the following; the reform makes cars cheaper to buy but more

expensive to own so it no longer makes sense to hold on to very old cars. This shift in incentives

is the same for the non-equilibrium model but the response is remarkably different due to the

equilibrium prices; all households have a higher probability of buying a new car but therefore

also a higher probability of supplying their currently held used car. This means that if there are

waves — i.e. a higher stock of cars of particular ages — then there will be a disproportionate

increase in the supply of cars of those ages. The equilibrium prices will therefore have to drop

further for those age groups to set excess demand to zero. This brings prices closer to the scrap

value, which results in the large, synchronized spike in scrappage in that year. Since scrapped

cars do not contribute to excess demand, the prices of the oldest car categories can drop very

far down without increasing excess demand. If households did not have stationary expectations

about future used car prices, this effect might be dampened somewhat. Currently, when they

see the equilibrium prices dropping close to the scrap price, they never expect them to become

better again and thus, they might as well scrap their cars sooner rather than later. Figure 6.9
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Figure 6.8: Counterfactual Simulation: Equilibrium Prices
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shows a rotated view of the car age distribution in Figure 6.8, which makes it easier to see the

new car sales replacing the old wave of cars being scrapped.

7 Conclusion

This paper develops a novel dynamic model of vehicle choice and utilization that includes en-

dogenous scrappage decisions and macroeconomic shocks. We estimate this model on detailed

Danish data, and find that we can replicate the observed “waves” in the Danish vehicle fleet

caused by macroeconomic recessions and upturns. Moreover, the model can replicate the ob-

served patterns in scrappage and transactions over the business cycle. Our simulations clearly

illustrate the importance of accounting for equilibrium price adjustments for creating realistic

simulations of the car age distribution into the future. We find the resulting equilibrium price

functions to generally be nicely behaved, downwards sloping and convex in age.

We illustrate the usefulness of the model by implementing a counterfactual reform that

changes the balance between fixed and variable costs of cars. In the simulation, the reform

induces a shift towards new car purchases but comes at the cost of accelerated scrappage of

older cars. This scrappage pattern cannot be replicated by the corresponding model without

equilibrium prices; it is generated by the combination of the equilibrium prices and the waves

in the car fleet that comes from past macro shocks.

The model is uniquely well-suited for analyzing the long-run effects of car tax policies on

the age of the vehicle fleet. Moreover, the model gives predictions on household driving and

type choice decisions, which allows for a full analysis of the policy implications for tax revenue,

driving, emissions, car fleet age and scrappage. Most models in the literature tend to emphasize

the short or medium run effects of tax policies.
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Figure 6.9: Counterfactual Simulation of the Car Stock under Equilibrium Prices
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A lot of important tasks remain for future research; most importantly, we find that trans-

actions costs need to be very high to rationalize the data. We conjecture that a more realistic

modeling of the marginal utility of money may remedy this. Secondly, while the theoretical

model admits more realism, we simplify the model in our estimation by assuming that con-

sumers have “stationary” expectations about future equilibrium prices. We propose a simple

way of relaxing this assumption by allowing consumers to base their expectations on the macro

state and fuel prices, but this is certainly an area with interesting prospects for future research.

A Appendix: Income Transitions

Table A.1 shows the results from the estimation of the equation

log yit = ρ0 + ρ1 log yit−1 + ρ2sit + ρ3s
2
it + ρ4mit + errorit. (A.1)

We find that controlling for the age profile of income, the AR coefficient is ρ̂1 = 0.853 (Table A.1.

We note, however, that the effect of the macro state, mt, is significant but only implies minor

changes in average income “growth” of about –0.4% p.a. The negative sign is very puzzling.

We have in and we note that this is presumably driven by the large dummy of 5.3% in 2002

(recesseion) and perhaps also the low dummies in 1999 and 2000.

One explanation for the unexpected sign of the macro dummy is that unemployment insur-

ance is almost universal in Denmark. Since our income measure also captures transfers, the

income does not drop to zero for unemployed households. To get around this, we have tried

running the AR regression using only wage-based income. We also expand the horizon. The

results are shown in A.2 and A.3. We still find the puzzling negative sign on the macro dummy

for the wage process as well, but we note that again, real wage growth was not that low during

the 2001–2003 mild recession and actually higher than during the boom in the 1990s (which
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Table A.1: AR regressions for income

(1) (2) (3) (4)

L.log real inc 0.878∗∗∗ 0.878∗∗∗ 0.798∗∗∗ 0.799∗∗∗

(6766.21) (6765.94) (4888.10) (4898.15)
1m=1 0.000105 -0.00416∗∗∗

(0.47) (-18.94)
agem 0.0116∗∗∗ 0.0115∗∗∗

(554.51) (549.73)
agemsq -0.000145∗∗∗ -0.000144∗∗∗

(-366.77) (-363.00)
Year dummiesa

1998 0.0172∗∗∗

1999 0.00635∗∗∗

2000 -0.00754∗∗∗

2001 0.0160∗∗∗

2002 0.0530∗∗∗

2003 0.0136∗∗∗

2004 0.0237∗∗∗

2005 0.0332∗∗∗

2006 0.0445∗∗∗

2007 0.0534∗∗∗

2008 0.0296∗∗∗

2009 0.0107∗∗∗

cons 1.564∗∗∗ 1.564∗∗∗ 2.452∗∗∗ 2.469∗∗∗

(948.47) (944.36) (1214.31) (1233.30)

N 17,053,312 17,053,312 17,053,312 17,053,312
a: We omit standard errors for year dummeis for easier overview.

Selection: Includes only couples and years strictly between 1997 and 2007.

Note: The income measure also includes transfers.
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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started in 1994). Our problems with finding a clear relationship between incomes at the micro

level and the macro state defined based on real GDP growth indicates that the link between

the macro cycle in the traditional binary understanding and the micro level is perhaps not that

clear cut.

Table A.2: AR regressions for log real wages

(1) (2) (3)

lagged log wage 0.875∗∗∗ 0.875∗∗∗ 0.847∗∗∗

(0.00) (0.00) (0.00)
mt = 1 0.008∗∗∗ -0.001∗∗∗

(0.00) (0.00)
Age (male) 0.044∗∗∗

(0.00)
Age squared -0.001∗∗∗

(0.00)
Constant 1.603∗∗∗ 1.593∗∗∗ 1.205∗∗∗

(0.00) (0.00) (0.00)

N 14,988,295 14,988,295 14,988,295
r2 0.650 0.650 0.663

Selection: Only couples with male aged 18 to 65 and all years [1992;2009].

The explained variable only measures wage income.
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Table A.3: AR regressions for log real wage

(1) (2) (3)

Lagged log wage 0.842∗∗∗ 0.847∗∗∗ 0.845∗∗∗

(0.00) (0.00) (0.00)
mt = 1 -0.003∗∗∗ -0.001∗∗∗

(0.00) (0.00)
Age (male) 0.044∗∗∗ 0.045∗∗∗

(0.00) (0.00)
Age squared -0.001∗∗∗ -0.001∗∗∗

(0.00) (0.00)
Year dummiesa

1994 0.019∗∗∗

1995 0.033∗∗∗

1996 0.035∗∗∗

1997 0.053∗∗∗

1998 0.061∗∗∗

1999 0.059∗∗∗

2000 0.049∗∗∗

2001 0.064∗∗∗

2002 0.049∗∗∗

2003 0.035∗∗∗

2004 0.068∗∗∗

2005 0.074∗∗∗

2006 0.092∗∗∗

2007 0.101∗∗∗

2008 0.086∗∗∗

2009 0.048∗∗∗

Constant 2.053∗∗∗ 1.205∗∗∗ 1.178∗∗∗

(0.03) (0.00) (0.00)

Age dummies Yes No No

N 14,988,295 14,988,295 14,988,295
r2 0.667 0.663 0.664
a: We omit standard errors for year dummies for easier overview.

Selection: Only couples with male aged 18 to 65 and all years [1992;2009].
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Figure B.1: Real Fuel Prices Over Time
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Figure B.2: Composition of the Gasoline Price (Octane 95)

B Appendix: Background and Data

In this appendix, we go into details about our dataset and institutional background that have

been omitted from the main text in Section 2.

B.1 Institutional Background

Figure B.1 shows the fuel prices for gasoline and diesel cars respectively over the sample period.

Both have increased and diesel prices have converged towards gasoline prices. The fuel price

composition over time in the sample period is shown for gasoline in Figure B.2 and for diesel

in Figure B.3. The figures show that the main variation in fuel prices in our sample period

1996–2009 comes from the product price.

To shed light on the Danish car taxation in a European perspective, Figure B.4 shows the

price of the same car, a Toyota Avensis, in different European countries. First off, the figure
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Figure B.4: MRSP For a Toyota Avensis: Differences in Europe

shows that the Danish price including taxes is the highest, approximately 50% larger than the

second-highest (Portugal). Secondly, the price net of tax is the lowest in Denmark, consistent

with the intuition that car dealers reduce their markups in the higher tax environment.

B.2 Additional Descriptives

Figure B.5 shows the number of transactions by car age and over time. When compared to the

car age distribution in Figure 2.1, we clearly see that the “waves” appear in both graphs. This

indicates that transactions tend to follow the age distribution.

Table B.1 shows the shares of households owning zero, one, two or more than two cars for

each year in our sample.

Figure B.6 shows that the cars in Denmark are typically handed down through a long chain

of owners with a mode of 5 owners for a 15 year old car. The figure takes all cars in 2009 that are

15 years old (i.e. first registered in Denmark in 1994) and where we observe the first owners of

the car. The first owners is observed for about two thirds of the cars. The reason for restricting

to 15 year old cars in 2009 is to avoid mixing car ages together, which will produce a mixed
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Table B.1: Number of Cars Owned per Household Over Time

0 cars 1 car 2 cars > 2 cars N

1996 .4910 .4418 .06294 .004279 1,985,421
1997 .4469 .4644 .08211 .006531 2,001,998
1998 .4198 .4757 .09608 .008402 1,995,553
1999 .4139 .4803 .09792 .007862 1,973,977
2000 .4113 .4832 .09827 .007278 1,947,799
2001 .4053 .4849 .1025 .007278 1,950,103
2002 .3975 .4868 .1082 .007586 1,965,165
2003 .3930 .4856 .1134 .008026 1,975,094
2004 .3914 .4823 .1178 .008448 1,980,979
2005 .3820 .4812 .1273 .009586 1,988,611
2006 .3744 .4793 .1357 .01060 1,989,600
2007 .3675 .4775 .1433 .01168 2,003,445
2008 .3668 .4770 .1448 .01143 2,016,840
2009 .3721 .4723 .1441 .01153 2,022,166

Total .4023 .4765 .1126 .008622 27,796,751
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Figure B.6: Number of owners for 15 year old cars in 2009

picture due to scrappage and missing data. The figure indicates that the most common is for a

car to have switched owners once every third year.

B.3 Scrappage

We do not observe scrappage per se in our dataset. Instead, we define scrappage as occuring

when a car ownership ends and we never see a new one starting for that car. This measure is

not perfect because an individual may choose to de-register his car and leave it in his garage for

a while. This may be particularly important for specialty cars and vintage cars but since these

are outside the scope of our paper, we are not too concerned with behavior of that sort.

We first consider the scrappage together with transactions; this highlights that when an

individual decides to sell a car in the model, he may either sell it on the used-car market or at

the scrap price. Figure B.7 shows for each car age the number of transactions in the data and

the number of scrappages. Firstly, the figure shows that the number of transactions increases

up to a car age of 3, after which it is relatively constant up until car ages of 14, whereafter it

falls linearly until age 23. The number is slightly higher for 24, but that is because we have

truncated the car age distribution. The scrappage frequency increases up to age 16 after which

it falls (because there are not that many cars left to scrap). Recall that the annual scrappage

in percent of the car stock increases over age categories in Figure 2.8. We see the same spikes

in scrappage in even years that correspond with the inspection years.

Table B.2 shows the number of scrappages in our data for all the sample years. We note that

we have exceptionally few scrappage observations in 1996 and 1997 while 1998 appears to be

half-way to the average that persists thereafter. To validate the number of scrappages, we also

show the number of scrappage subsidies paid out for environmentally friendly scrappage of older

cars. The data comes from the website bilordning.dk, which is maintained by Sekretariatet for

Miljøordning for Biler, a government office under the Ministry of the Environment overseeing

vehicle scrappage and the scrappage subsidy. The subsidy was introduced in July 2000 and

has been fixed at 1,500 DKK throughout our sample period (it was changed in 2014). Given
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Figure B.7: Number of Scrappages and Number of Transactions by Car Age

the introduction half-way through the year, the 30,439 subsidies corresponds closely with the

increasing trend from 60,000 up to just under 100,000 subsidies paid out annually. The number

is lower than the number of scrappages by our definition of scrappage, which is to be expected

for a number of reasons; firstly, some cars are de-registered for a few years and then re-register

again later. This may explain the higher number of scrappages later in our sample and perhaps

particularly some of the younger scrapped cars, we see in Figure 2.9 for the latest years. Our

dataset was drawn from the license plate registers in September 2011, so we do not observe cars

that have since then been re-registered. Secondly, some cars are exported, which we do not

observe. However, given the higher used car prices in Denmark, we expect this to be a minor

issue. Thirdly, some cars are kept as collectibles (e.g. vintage or specialty cars). These cars are

outside the focus of this paper so we do not worry about not being able to fit those cars.

Figure B.8 shows the subsidies paid out by the age of the car being scrapped. The data does

not match up with the other data sources of bilordning.dk, indicating that they may have

missing observations of car age. Where it is observed, we see that while the earliest subsidies

were paid out to very old cars, the car age distribution after this looks somewhat stable. The

biggest group is the 16–20 year old cars, but the number of 21–25 year old cars has grown from

3930 to 19526 from 2002 to 2009. Whether expected lifetime of cars has gone up or this was a

transitory thing is hard to say from these descriptives alone.

Figure B.9 shows the number of ownership spells ending each year in our data, going back

to 1992. The number increases from around 100,000 in 1992 up to over 400,000 in 1999, after

which it appears to stabilize at this level. We note that there are fewer periods ending in the

years prior to 1998, but not enough so to explain why we have so few scrappage incidents prior
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Table B.2: Car Scrappage by Year: Sample Data and Scrappage Subsidies

Year Scrappage in Data Subsidies

1996 3884 0
1997 4798 0
1998 47509 0
1999 136015 0
2000 120257 30439
2001 102258 68583
2002 105398 79836
2003 102452 86141
2004 110467 92700
2005 113246 98295
2006 127199 94268
2007 146709 91712
2008 141416 95747
2009 128017 93543
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Figure B.8: Scrappage Subsidies Paid by Car Age (source: bilordning.dk)
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Figure B.9: Number of Ownership Spells Ending

to 1998.

B.4 Driving

Driving in our data comes from the safety inspections administered by the Ministry of Trans-

portation. They occur when the car is aged 4 first and then every 2nd year thereafter. In

practice, the test date varies by about 3 months around this. At these inspections, the odome-

ter is measured and we find the vehicle kilometers traveled (VKT) as the first differences in the

odometer readings.

Figure B.10 shows the average VKT conditional on the car age. We have split the data

into 20 quantiles depending on the age of the car (for the observations where a car is present).

Within each of these groups, we show the average VKT. Note that for the typical car, the VKT

will be the same when the car is between zero and four years old. However, some cars may have

an inspection before the planned one at four years, which explains why the average still changes

before four years. The graph shows that households with older cars tend to drive less. The

VKT increases up towards an age of four but recall that for the typical car, we only observe the

average driving for the full period from zero to four years of age.

Figure B.11 shows the VKT by the household income. We have split the observations into

20 quantiles based on income (for the households where we observe VKT). Within each of these

quantiles, we show the average VKT. Note that in the data used for estimation, we have split

household income in two if the household owns two cars, and in three for three cars, etc. In

Figure B.11, we show the relationship with the un-split income — the figure looks similar when

we have split the income except for a small hump mid way through. Figure B.11 shows that

high
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Figure B.10: Vehicle Kilometers Traveled by Car Age
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Table B.3 shows regressions of vehicle kilometers traveled (VKT) on different sets of controls

for the full sample. We find that the average elasticity of the price per kilometer (PPK, defined

as the fuel price devided by the fuel efficiency in km/l) is at the lowest –179% unless we control

for a diesel dummy, in which case it drops to –41.9%. This big difference is intuitively clear;

the difference in both fuel price and fuel efficiency is substantial between the gasoline and the

fuel price segment. Without a dummy, we are attributing all differences in driving to the price

variable and not allowing a levle shift. On the other hand, from the point of view of the

model, there should not be a level shift between the two segments unless it is due to endogenous

selection based on the PPK variable in the sense that households needing to drive a lot choose

a car that will allow them to do so cheaply.32 Nevertheless, we find these high price elasticities

of driving puzzling, in particular in light of the findings of Munk-Nielsen (2015) and Gillingham

and Munk-Nielsen (2015), who find much lower elasticities. We conjecture that adding more

controls in line with those studies will lower the elasticity.

Table B.3: Regressions of vehicle kilometers traveled (VKT) on controls

(1) (2) (3) (4) (5) (6) (7)

Price per km (PPK) -107.3718∗∗∗ -96.2963∗∗∗ -99.9269∗∗∗ -104.3433∗∗∗ -86.6610∗∗∗ -107.5702∗∗∗ -9.4086∗∗∗

(0.11) (0.19) (0.12) (0.11) (0.19) (0.24) (0.31)
PPK X income -2.3936∗∗∗ -2.1379∗∗∗ -2.1749∗∗∗ -2.1158∗∗∗

(0.03) (0.03) (0.03) (0.03)
PPK X income squared 0.0005∗∗∗ 0.0004∗∗∗ 0.0004∗∗∗ 0.0004∗∗∗

(0.00) (0.00) (0.00) (0.00)
PPK X dBoom=1 33.5003∗∗∗ -5.8843∗∗∗

(0.23) (0.24)
Constant 117.8539∗∗∗ 109.1657∗∗∗ 116.1846∗∗∗ 104.0167∗∗∗ 97.7115∗∗∗ 111.3234∗∗∗ 47.4324∗∗∗

(0.07) (0.12) (0.07) (0.13) (0.16) (0.19) (0.23)
Income (100,000) 1.8640∗∗∗ 1.5193∗∗∗ 1.5401∗∗∗ 1.4798∗∗∗

(0.02) (0.02) (0.02) (0.02)
Income squared -0.0004∗∗∗ -0.0003∗∗∗ -0.0003∗∗∗ -0.0002∗∗∗

(0.00) (0.00) (0.00) (0.00)
Car age -0.2141∗∗∗ -0.2593∗∗∗ -0.2864∗∗∗ -0.2889∗∗∗

(0.00) (0.00) (0.00) (0.00)
Car age squared -0.0201∗∗∗ -0.0184∗∗∗ -0.0178∗∗∗ -0.0213∗∗∗

(0.00) (0.00) (0.00) (0.00)
Age (head) 0.9297∗∗∗ 0.8270∗∗∗ 0.8259∗∗∗ 0.8155∗∗∗

(0.01) (0.01) (0.01) (0.01)
Age squared -0.0138∗∗∗ -0.0128∗∗∗ -0.0128∗∗∗ -0.0127∗∗∗

(0.00) (0.00) (0.00) (0.00)
mt = 1 -21.4665∗∗∗ 4.1525∗∗∗

(0.15) (0.15)
Diesel dummy 17.3834∗∗∗

(0.03)

N 15,018,013 15,018,013 15,018,013 15,018,013 15,018,013 15,018,013 15,018,013
R2 .0555 .0575 .0658 .0732 .0851 .0864 .102

Avg. PPK-elasticitya -1.9860 -1.9859 -1.8483 -1.9300 -1.7859 -1.8131 -.4188

Selection: VKT in ]0;1,000[ and year in [1996;2009] and household age in [18;65]
a: The avg. elasticity of driving wrt. the price per kilometer.

Income is measured in 100,000 real 2005 DKK.

32The selection could also go the other way so that households needing to drive a lot would choose a car that
would make the long drive as comfortable as possible and therefore go for a more luxurious car. Comfort and
luxury tend to be correlated positively with vehicle weight and negatively with fuel efficiency.
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C Appendix: Flexible Price Function Specification

This appendix describes a flexible specification for the price function for cars. We could estimate

this price function as a first step along with the estimation of the structural parameters of the

model using the Danish Register data, rather than using the price depreciation rates given to us

from the Danish Automobile Dealers Association. Those depreciation rates may or may not be

reasonable values to start the estimation with. The main drawback of using them is that they

do not shift with changes in fuel prices or macro conditions. Below we describe a flexible price

function that can allow fuel prices and macro shocks to enter and affect depreciation rates, and

we have the ability to estimate the parameters using unconstrained optimization algorithms,

yet the estimated price functions are constrained (via minimal functional form assumptions

described below) to always be downward sloping.

We do assume that new car prices and scrap prices are determined exogenously. The ex-

ogenous new car price assumption is a consequence of the “small open economy” model for

Denmark, where all cars are imported and we assume demand for new cars from Denmark is an

insignificant share of worldwide demand for new cars. However it may be useful to allow new

car prices to vary with macro shocks (which we initially assume to pertain to Denmark only,

but which could be correlated with a worldwide macro shock, e.g. the 2008 Great Recession)

and the specification below allows for this possibility.

Similarly we assume there is an infinitely elastic demand for vehicles as scrap, and this sets

an exogenously determined scrappage price for cars, and this could also depend on fuel prices

and macro shocks.

Recall the key state variables in the model: (a,m, p, τ) where τ is the type of car, a is age

of car, m is the macro shock, and p is the fuel price. We conjectured that the equilibrium in

the Danish car market could be found for prices of the form P (a,m, p, τ), i.e. we assumed that

the price function is not a function of the age distribution of the vehicle stock but only of the

current macro shock and fuel price. If a = 0 is a brand new car, then P (τ) = P (0,m, p, τ) is

the “boundary condition” for the price of a new car under the small open economy assumption,

where P (τ) is the average suggested retail price of a new car of type τ . If we had enough time

series data to detect any variation in new car prices with fuel prices or macro shocks, it may be

possible to fit a function P (m, p, τ) where new car prices shift with fuel prices and macro shocks

(e.g. gas guzzlers sell at a discount when fuel prices are high, whereas high fuel efficiency cars

sell at a premium when fuel prices are high, and luxury cars are discounted and economy cars

sell at relatively higher prices during a recession, whereas luxury car prices are relatively higher

and economy car prices are relatively lower during a recession, etc). But for now our data only

allow us to identify P (τ) which does not depend on (m, p).

We may be able to estimate scrap prices P (τ) from the model, but for now we will fix this

price at approximately 3,000 Danish Kroner, independent of τ or of (m, p). It may be that

export of old Mercedes, BMW to developing countries, or “collector value” implies a higher

value than this floor scrap value for certain types of cars, but for now we go with this basic

assumption of a constant scrap price for all types of vehicles, regardless of fuel prices or macro

conditions.

To understand the basic flexible secondary price specification, first ignore the effect of (m, p)
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so that the prices are just a function of a, P (a) (and for simplicity we suppress the car type

indicator τ as well. If a = 0 is a new car and a = 20 is the oldest car allowed, we have the

boundary conditions that P (0) = P and P (20) = P . In the illustration below we set P = 180000

and P = 3000.

Let θ be an unconstrained 19 × 1 parameter vector. We will now write a specification for

P (a) that depends on these 19 unconstrained parameters θ in a way that guarantees that P (a)

is always decreasing in a and satisfies the boundary conditions P (0) = P and P (20) = P . The

specification that does this, P (a, θ) is given below

P (a, θ) = P + (P − P )
a∏
i=1

ρ(θi), a = 1, . . . , 19 (C.1)

where we define ρ(θ0) ≡ 1 and

ρ(θi) =
exp{θi}

1 + exp{θi}
(C.2)

for i = 1, . . . , 19. Note that the θi can take any value in the interval (−∞,∞) and for any

vector θ ∈ R19 the implied price function P (a, θ) will be decreasing in a. Further we can impose

restrictions to reduce the dimensionality of the vector θ. For example we could restrict θ to take

the form

θ = (θ1, θ1, . . . , θ1) (C.3)

so that θ ∈ R19 depends only on a single unknown parameter θ1 ∈ R1. Or we could partition θ

to depend on just two parameters (θ1, θ2) as follows

θ = (θ1, θ1, . . . , θ1, θ2, . . . , θ2) (C.4)

so the first J1 components of θ take the value θ1 and the remaining 19−J1 components of θ take

the value θ2, and so forth. This gives us quite a bit of flexibility in how flexible we want to allow

the price function P (a, θ) to be as a function of a. Even when the price function is restricted

to depend on only a single parameter θ1, the implied price function P (a, θ1) can assume many

different shapes as θ1 ranges over the interval (−∞,∞) as illustrated in figure C below.

Now, taking this basic flexible specification for the price of cars as a function of age, we can

allow these functions to shift with macro shocks and fuel prices in a flexible way also by a small

modification of the basic functional form in equation (C.1) above. In addition to the 19 × 1

vector θ, let α be a K × 1 vector that can flexibly parameterize the dependence of the price

function on (m, p). Let f(m, p, α) be some function of (m, p, α) such as linear-in-parameters

f(m, p, α) = α1 + α2m+ α3p.

P (a,m, p, θ, α) = P + (P − P )

a∏
i=1

ρ(m, p, θi, α), a = 1, . . . , 19 (C.5)

where we define ρ(θ0) ≡ 1 and

ρ(m, p, θi, ) =
exp{θi + f(m, p, α)}

1 + exp{θi + f(m, p, α)}
(C.6)
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for i = 1, . . . , 19. Note by construction we have P (0,m, p, τ) = P (m, p, τ).

C.1 Derivatives of the price function with respect to (θ, α)

Let θj be one of the independent subparameters (or components) of the 19 × 1 vector θ =

(θ1, . . . , θ19). In the case of parameter restrictions, such as the most restrictive specification

θ = (θ1, . . . , θ1), then the θ vector would depend on only one independent subparameter θ1,

whereas if θ depends on two free parametes (independent components) θ1 and θ2 then θ =

(θ1, . . . , θ1, θ2, . . . , θ2). Suppose we have a specification where the the overall 19 × 1 θ vector

depends on J free parameters (θ1, . . . , θJ), with the most flexible case being J = 19. Partition

the set of indices {1, 2, . . . , 19} into J subintervals {1, 2, . . . , 19} = (I1, I2, . . . , IJ) where I1 =

{1, . . . , I1}, and I2 = {I1 + 1, . . . , I2}, and so on until IJ = {IJ−1 + 1, . . . , 19}. Then we have

∂

∂θj
P (a,m, p, τ) = [P (a,m, p, τ)− P ]

[
a∑
i=1

[1− ρ(m, p, θi, α)]I{i ∈ Ij}

]
(C.7)

∂

∂α
P (a,m, p, τ) = [P (a,m, p, τ)− P ]

[
a∑
i=1

[1− ρ(m, p, θi, α)]
∂

∂α
f(p,m, α)

]
. (C.8)

Of course we also have ∂
∂θj
P (0,m, p, τ) = 0 and ∂

∂αP (0,m, p, τ) = 0 since P (0,m, p, τ) =

P (m, p, τ) by construction, and the latter does not depend on (θ, α).

C.2 Non-monotonic specification

We have found that it is difficult to estimate all parameters of the least restrictive monotonic

specification above (i.e. where we have separate depreciation rates for all 19 age groups from

age 1 to age 19 with a separate θa parameter for each value of a). The reason is that when there

is rapid initial depreciation (i.e. large negative “early values” for θa, a = 1, 2, 3, . . .), there is less

room for manuevering for the values of the later depreciation parameters θa, a = 15, 16, . . . , 19.

If the car’s secondhand price is already close to scrap by age 12, then the depreciation rate

parameters for a = 13, 14, . . . , 19 hardly matter, and this shows up as parameters that have

gradients close to zero and this tends to make the likelihood hessian matrix poorly conditioned

(i.e. close to singular). We are able to estimate the first few depreciation parameters, such

as restricted version of the a specification above where we estimate only (θ1, θ2, θ3) where θ1

governs depreciation for ages 1, . . . , I1, θ2 governs deprecciation over ages I1 + 1, . . . , I2, and θ3

governs depreciation for the remaining ages a = I2 + 1, . . . , 19.

But it might be useful to try a less restrictive specification of secondary market prices where

we drop the monotonicity restriction. In this specification we do restrict prices to lie in the

interval [P (τ,m, p), P (τ,m, p)] but we do not require the price function to be monotonically

decreasing. It will have unrestricted choices of depreciation parameters θa, a = 1, . . . , 19 but

these parameters will be more “orthogonal” than in the case where we impose a monotonicity

restriction as above, since a choice for θa does not restrict in any way the choices of possible

prices in other age categories a′ for a′ 6= a.

This specification is rather simple: θa is just the parameter of a logit function that speci-

fies the fraction of the distance between P (τ,m, p) and P (τ,m, p) the secondary market price
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P (τ, a,m, p) lies:

ρa(θa) =
exp{θa}

1 + exp{θa}
, (C.9)

and

P (τ, a,m, p, θ) =
19∑
i=1

I{i = a}
[
P (τ,m, p)ρa(θa) + P (τ,m, p)(1− ρa(θa)

]
. (C.10)

This specification will ensure that P (τ,m, p) ≤ P (τ, a,m, p, θ) ≤ P (τ,m, p) for any choice of

θ = (θ1, . . . , θ19) ∈ R19 but it does not enforce any monotonicity in P (τ, a,m, p, θ) as a function

of a.

The gradient of P (τ, a,m, p, θ) with respect to θa is easy to compute using the fact that
∂
∂θa

ρa(θa) = ρa(θa)(1− ρa(θa)).

D Appendix: Test equilibria

This appendix describes a simple infinite horizon model for constructing equilibria in a stationary

(no macro of fuel price shocks) case with no transactions cost to provide a test bed to check that

the equilibrium solver we develop finds the correct equilibrium. In the process of doing this, we

discovered the possibility of multiple Pareto-ranked equilibria in the secondary market for cars.

Consider a simplified model where there is only one type of car (though of different ages) and

consumers live forever. We assume any utility from driving is subsumed into the quasi-linear

specification where the disutilty of owning a car can be expressed in monetary equivalent units

as akin to a “maintenance cost” m(a) which is increasing in the age of the car a. Thus we

can convert the utility maximization problem into a “dual” cost-minimization problem where a

consumer chooses a trading strategy to minimize the discounted costs of holding a sequence of

cars over an infinite horizon.

When there are no transactions costs, it will be optimal for the consumer to trade every

period for a preferred vehicle age a∗. The per period cost of the strategy of holding a car of age

a∗ for one period and then selling it and buying another car of age a∗ is

c(a∗) = m(a∗) + P (a∗)− βP (a∗ + 1), (D.1)

that is, the one period holding cost c(a∗) is the sum of the “maintenance cost” m(a∗) plus the

expected depreciation P (a∗)−βP (a∗+1), where β ∈ [0, 1) is the consumer’s discount factor. The

present discounted value of holding costs over an infinite horizon is then simply c(a∗)/(1− β).

If all consumers have the same discount factor β and have homogeneous preferences, then

in equilibrium all consumers must be indifferent between holding any of the available ages of

vehicles. Assume that cars that are older than some threshold age γ are scrapped, and we let

a = 0 denote a brand new vehicle. Then cars of ages 0, 1, . . . , γ − 1 will be held by consumers,

and once a car reaches age γ it will be scrapped for the scrappage price P . As we have done

in the paper, we assume there is an infinitely elastic demand for vehicles for their scrap value

at price P and there is also an infinitely elastic supply of new vehicles at price P . If we also

assume that m(a) is strictly monotonic, then this implies that for each age a ∈ {0, 1, . . . , γ − 1}
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we have P (a) ∈ [P , P ]. Clearly we must have P (0) = P and P (γ) = P and these prices are thus

exogenously fixed. The remaining prices P (1), P (2), . . . , P (γ − 1) are determined endogenously

in equilibrium.

The equilibrium condition is that these prices must adjust to make consumers indifferent

about holding any of the ages of vehicles, a ∈ {0, 1, . . . , γ − 1}, or

c(0) = c(1) = · · · = c(γ − 1). (D.2)

These indifference restrictions imply a system of γ − 1 linear equations in the γ − 1 unknowns

P (1), . . . , P (γ − 1). This system can be written in matrix form as

X × P = Y (D.3)

where P ′ = (P (1), . . . , P (γ − 1)) and X is the γ − 1× γ − 1 matrix given by

X =


(1 + β) −β 0 · · · 0 0

−1 (1 + β) −β 0 · · · 0

0 0 0 · · · 0 0

0 0 · · · −1 (1 + β) −β
0 0 · · · 0 −1 (1 + β)

 , (D.4)

and Y is a γ − 1× 1 vector given by

Y =


m(0)−m(1) + P

m(1)−m(2)

· · ·
m(γ − 2)−m(γ − 1)

m(γ − 1)−m(γ) + βP

 . (D.5)

Notice that we do not impose a) monotonicity or b) the restriction that P (a) ∈ [P , P ] on the

solution P to the linear system (D.3). Thus, we need to check if the solution has these properties.

If it does, it is an equilibrium since the price vector results in all consumers being indifferent

between holding any one of the available vehicles that are traded in the new or secondary

markets, a ∈ {0, 1, . . . , γ− 1}. The equilibrium “quantities” are the holdings of vehicles of these

different ages. It is easy to see that without any accidents or “endogenous scrappage” of cars

prior to the scrappage threshold age γ, then the equilibrium or steady state age distribution of

cars will be uniform on the interval {0, . . . , γ−1}, so that a fraction 1/(γ−1) of the total vehicle

stock will be of age a at the beginning of each period. This implies in particular that (assuming

all consumers hold just one car) that the fraction 1/(γ− 1) of the population will buy a new car

each period, and the corresponding fraction will scrap their cars, so the market will be in “flow

equilibrium”. It will also be in “stock equilibrium” since the fact that consumers are indifferent

about which age vehicle they own and hold, they can be arranged so that their demand for the

different ages is also uniform, matching the supply. Thus there will be zero excess demand for

any vehicle age a ∈ {0, 1, . . . , γ − 1} at the price function given above.
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We have demonstrated that multiple equilibria are possible in this model. That is, we can

find different values of γ and different corresponding price vectors Pγ for which Pγ satisfies the

linear system (D.3) and is also monotonically decreasing from P to P . In the examples we have

computed these equilibria can be Pareto-ranked, with the equilibria corresponding to larger

values of γ being Pareto-preferred by consumers to equilibria with smaller values of γ. That is,

per period holding costs are higher in equilibria where cars are scrapped “prematurely”.

However γ cannot be increased to arbitrarily large values for a fixed m(a) function. Even-

tually for large enough γ, the solution Pγ to the linear system (D.3) is no longer monotonically

decreasing from P to P and thus no longer constitutes an equilibrium.

We have found there is a largest possible γ for any m(a) function, and this γ turns out to

be the optimal scrappage threshold to a “social planning problem” where there is no secondary

market and a single representative consumer simply chooses an age threshold at which to replace

their current car with a brand new one. The value function V (a) to this problem is given by

V (a) = min
[
P − P +m(0) + βV (1),m(a) + βV (a+ 1)

]
. (D.6)

It is easy to see from the Bellman equation above that V (0) = m(0) + βV (1) and thus, any

consumer who is “endowed” with a brand new car would never immediately replace it with

another new one since this would involve the additional replacement cost P − P . However if

m(a) is increasing sufficiently rapidly there will be a finite age, γ, for which we have

V (γ) = P − P +m(0) + βV (1) = P − P + V (0). (D.7)

Thus, the optimal scrappage threshold γ is the smallest value of a at which it is optimal for the

representative consumer to scrap their car and buy a new one.

Using this value function, we can define a shadow price function P (a) by

P (a) = P − [V (a)− V (0)]. (D.8)

Notice that this shadow price function statisfies P (0) = P , P (γ) = P , and P (a) is monotonically

declining in a for the values of a for which V (a) is monotonically increasing in a, which is the

set of a ∈ {0, 1, . . . , γ − 1}. However it is not hard to see from the Bellman equation (D.6) that

for a < γ we have

V (a) = m(a) + βV (a+ 1), (D.9)

which simply says that it is optimal for the consumer to keep their car if its age is younger

than the optimal scrappage age γ. However using this condition, it is then easy to verify

that the shadow price function (D.8) makes consumers indifferent between all car ages a ∈
{0, 1, . . . , γ − 1},

m(a) + P (a)− βP (a+ 1) = m(a′) + P (a′)− βP (a′) ∀ a, a′ ∈ {0, 1, . . . , γ − 1}. (D.10)

Thus it follows that the shadow price function (D.8) is an equilibrium in the secondary market,

and we can show it is also the Pareto dominant equilibrium, i.e. the one in consumers have the
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lowest holding cost and thus the highest discounted welfare.

E Appendix 5: Additional Results

This appendix contians additional results that have been omitted from the main results sections.

E.1 Estimates with Fixed Transaction Costs

Table E.1 show estimation results where we have kept transaction costs fixed at 10,000 DKK plus

20% of the traded car’s values. Comparing the parameter estimates to the preferred specification

in the main text, where transaction costs are estimated, we in particular note the utility of money

(θ0), which is considerably higher here.

Figure E.1 shows the fit in terms of conditional choice probabilities. Compared to the

preferred specification where the transaction cost is estimated, we see a considerable under-

prediction of the keep decision. Moreover, the model produces much more probability mass for

all car ages over 4 with the highest mis-match at car age 10. Turning to Figure E.2, we see that

the keep probability predicted by the model changes much more with the car age than does the

observed probability; at car age 4, the observed and predicted keep probabilities are about equal

but while the data ends up at a probability of about 60% at the oldest car age, the predicted

probability tends to zero.

Figure E.3 shows a simulation forward in time, keeping the choice set and price schedule fixed

at the 2002 data values but drawing state variables from the conditional transition densities

according to the model. The simulated car age distribution has no clear waves but rather

shows synchronized, parallel shifts up in transactions in particular years. This pattern can be

explained by the macro dummy shifting down the utility of money, making it more likely for all

households to buy a new car, causing the upwards shift in the age distribution. However, the

under-predicted keep probability means that households need not hold on to their cars in the

following year.

E.2 Equilibrium Prices

In this section, we show additional results concerning the equilibrium price simulations. To

re-iterate, the parameter estimates here are based on a first-stage estimation of the driving

parameters (κs) that are fixed in the second stage, where the structural parameters are estimated,

including the fixed transaction cost. Finally, we solve for equilibrium prices in each year by

setting expected excess demand equal to zero, clearing the market in each year. Figure E.4

shows simulations complementing figure 6.4 but showing all car age categories; in particular,

the first- and final-year depreciations were omitted in Figure 6.4 because they make it hard to

see what else happens in the figure. The large final-year depreciation may be to avoid too high

scrapping earlier on.

E.3 Counterfactual Simulations

Figures E.5 and E.6 accompany Figures Figures 6.3 and 6.6 in Section 6.5. Figure E.5 shows

the macro state over the simulation and the fuel prices (which are held constant) and
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Table E.1: Structural Estimates — Fixed Transaction Costs

Variable Estimate Std.err.

Model setup

Min. Hh. age 20
Max. Hh. age 85
# of car ages 25
# of car types 2
Clunkers in choiceset 1

β Discount factor 0.95
ρ Inc. AR(1) term 1
σy Inc. s.d. 0
ρp Fuel price AR(1) term 1
σy Fuel price s.d. 0.0699
Pr(0|0) Macro transition 0.75
Pr(1|1) Macro transition 0.8

Accident prob. 0.0004
λ Logit error var. 1
λscrap Scrappage error var. 0.9

Monetary Utility

θ0 Intercept 0.13984∗∗∗ 2.921e-06
θ1 Inc. -8.0175e-05∗∗∗ 2.597e-07
θ2 Inc. sq. 5.996e-08∗∗∗ 2.915e-10
θ3 Macro -0.00055181∗∗∗ 3.881e-05

Driving Utility

γ0 Intercept 0.26509∗∗∗ 0.0005566
γ1 Car age 0
γ2 Car age sq. 0
γ3 Hh. age 0
γ4 Hh. age squared 0
γ5 Macro 0
γ6 Macro 0
γ7 Macro 0
φ Squared VKT 0

Car Utility

q(a) Car age, linear 0.34035∗∗∗ 0.0008795
q(a) Car age, squared -0.0013817∗∗∗ 3.947e-05
δ1 Car type dummy 1.6588∗∗∗ 0.01175
δ2 Car type dummy 0.00087379 0.01281

Transaction costs

Fixed cost 10
Proportional cost 0.2

N 169,733
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In this section, we present results that are supplementary to the ones shown in section 6.5.

Figure E.7 accompanies Figures 6.7 and 6.8 in showing the realized paths of the macro and fuel

prices processes. Firstly, note that the fuel price is constant throughout the period except in

the year 2012 where we counterfactually increase it by 50%.

To compare against the counterfactual simulation results in Figures 6.7 and 6.8, we show

the corresponding graph for the actual data in Figure E.8. Note that the prices shown there are

computed using the DAF suggested depreciation rates. The most important features to note are

regarding purchases and scrappage; purchases clearly follow the car age distribution. In other

words, we see more purchases (and thus sales) of cars age categories that are more abundant.

Moreover, the scrappage distribution is distinctly different from the non-equilibrium model; in

particular,

F Notation

This section provides an overview of the notation used in the paper.

Below are some of the core equations from the paper.

Flow utility:

u(k, τ, a, s, p,m) = θ(y,m)[y − pk(τ, a, p, co)k − T ]

+ γ(y, s, a,m)k + φk2 − q(a) + δn1(a = 0) + δτ ,

γ(y, s, a,m) = γ0 + γ1a+ γ2a
2 + γ3s+ γ4s

2 + γ5m+ γ6y + γ7y
2,

θ(y,m) = θ0 + θ1y + θ2y
2 + θ3m.

Optimal driving:

k∗ =
1

2φ
(θ0 + θ1y + θ2y

2 + θ3m)pk(a, τ)− 1

2φ
(γ0 + γ1a+ γ2a

2 + γ3s+ γ4s
2 + γ5m+ γ6y + γ7y

2)

= κ0 + κ1a+ κ2a
2 + κ3s+ κ4s

2 + κ5m+ κ6y + κ7y
2 + (κ8 + κ9y + κ10y

2 + κ11m)pkm(a, τ),

where the κ-parameters are the “reduced form” or “first stage” parameters. In the main esti-

mation, they are kept fixed and used to predict the optimal driving, k∗(xi,t), which is then used

in the model. Trading costs:

T (d′, d, p,m) =

0 if d′ = (τ, a, 0) or d, d′ = (∅, ∅)
P (τ ′, a′, p,m)− P (τ, a, p,m) + cT (τ ′, a′, p,m) if d′ = (τ ′, a′, 1) and d = (τ, a)

P (τ ′, a′, p,m)− P (τ, p,m) + cT (τ ′, a′, p,m) if d′ = (τ ′, a′,−1) and d = (τ, a)

−P (τ, a, p,m) if d′ = (∅, ∅, 1) and d = (τ, a)

−P (τ, p,m) if d′ = (∅, ∅,−1) and d = (τ, a)

P (τ ′, a′, p,m) + cT (τ ′, a′, p,m) if d′ = (τ ′, a′) 6= (∅, ∅) and d = (∅, ∅)

Transactions costs:

cT (τ ′, a′, p,m) = P (τ ′, a′, p,m)b1(τ ′, a′, p,m) + b2(τ ′, a′, p,m) (F.1)
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Table F.1: Notation

s Household age, s = 20, ..., 85.
y Household income.
x Household characteristics, (s, y).
m Binary macro state, m = 1 for boom.
p Fuel price.
k Vehicle kilometers traveled (abbreviated VKT).
β Annual time discount factor, β = 0.95.
τ Car type. In the application: gasoline or diesel.
a Discrete car age. In the application, a ∈ {0, ..., 24}.
P (τ, 0) New car price (from the DAF data).
ζτ Depreciation factor (from the DAF data).
P (τ, a, p,m) Car prices as they enter into the consumers’ expectations.
P (τ, p,m) Fixed scrap value for a type τ car. In the application, we assume that

P (τ, p,m) = ζ āτP (τ, 0), i.e. the used car price indicated by the DAF depreci-
ation for a car of the oldest age.

P (τ, a, t) Car prices when we solve for equilibrium and allow them to vary freely over
time, t, to equate supply and demand.

α(τ, a, x) Accident probability.
ds Discrete decision about selling, ds ∈ {−1, 0, 1}, where ds = 0 means keeping,

ds = 1 means selling at the used-car market and ds stands for scrapping the
car.

d Discrete car state, d = (τ, a). The no-car state is denoted d = (∅, ∅).
d′ Discrete decision, d = (τ, a, ds) (depending on the context, we some times

omit the scrappage decision, ds, from d′).
D(d) Choiceset available to a household with car d = (τ, a).
T (d′, d, p,m) Trading cost function.
cT (τ ′, a′, p,m) Transactions cost.
b1(τ ′, a, p,m) Proportional term in the transactions cost.
b2(τ ′, a, p,m) Fixed term in the transactions cost.
λ Scaling parameter in the scrappage probability.
ψ Co-insurance rate for accidents where the car is totaled.

Utility parameters

θ(y,m) Utility of money.
γ(y, s, a,m) Driving utility, linear term.
φ Driving utility, quadratic term.
θj Parameters entering into θ(y,m), j = 0, 1, 2, 3.
γj Parameters entering into γ(y, s, a,m), j = 0, 1, ..., 7.
κj Parameters in the reduced-form driving equation. Interpreted as scaled ver-

sions of θj and γj by −.5/φ and .5/φ respectively.
ρj Coefficients in the AR(1) equation for log income.
σy Dispersion on the AR(1) error term for log income.
σp Dispersion on the AR(1) error term for log fuel price.
ϕ
(
f(d′),m′, p′, x′

)
Value function integrated over the nested scrappage sub-problem (see equa-
tion (3.15)).

Γ(St+1|St, Pt) Transition density for the state variables of all households in the economy
jointly.
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Table F.2: Summary Statistics
Variable N mean sd p1 p50 p99

Age of H. 22041601.00 38.93 11.66 19.00 38.00 60.00
Real income (2005 kr) 22041601.00 403820.70 403550.81 29303.24 325821.59 1410501.00
Urban resident 22041601.00 0.32 0.47 0.00 0.00 1.00
Work distance of H. 22041601.00 20.81 86.96 0.00 24.00 104.89
Unemployment for H. 16242835.00 0.08 0.28 0.00 0.00 1.00
Dummy for couple 22041601.00 0.45 0.50 0.00 0.00 1.00
H. Work place shut down 9221767.00 0.03 0.18 0.00 0.00 1.00
Num of kids 22041601.00 0.61 0.97 0.00 0.00 4.00
Car age in years 7085310.00 7.27 4.88 0.00 7.00 20.00
Fuel price (period) 6362373.00 8.76 0.63 7.04 8.87 9.63
Fuel price (annual) 22041601.00 8.37 1.32 6.42 8.21 10.50
Dummy for diesel car 22041601.00 0.02 0.14 0.00 0.00 1.00
Total weight of car 7085310.00 1576.66 217.83 1125.00 1575.00 2100.00
Fuel efficiency (km/l) 3547818.00 14.21 2.49 9.45 13.82 22.70
VKT (km traveled/day) 7085310.00 46.52 24.22 4.13 43.53 124.39
Years to test 7085310.00 4.03 3.65 1.36 2.28 16.66

Notes: “H.” refers to the head of the household. All Danish kroner (kr) in 2005 kroner.
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Figure E.1: Model Fit: Conditional Choice Probabilities
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Figure E.2: Model Fit by State Variables
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Figure E.3: Forward Simulation
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Figure E.5: Forward Simulation with Equilibrium Prices
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Figure E.6: Forward Simulation with Equilibrium Prices
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Figure E.7: Counterfactual Simulations: Macro and Fuel Price Processes
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Figure E.8: Age Distribution, Scrappage and Purchases in the Data
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